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a b s t r a c t 

Age-related structural and functional changes that occur during brain development are critical for cortical devel- 

opment and functioning. Previous electroencephalography (EEG) and magnetoencephalography (MEG) studies 

have highlighted the utility of power spectra analyses and have uncovered age-related trends that reflect per- 

ceptual, cognitive, and behavioural states as well as their underlying neurophysiology. The aim of the current 

study was to investigate age-related change in aperiodic and periodic alpha activity across a large sample of 

pre- and school-aged children ( N = 502, age range 4 -11-years-of-age). Power spectra were extracted from base- 

line EEG recordings (eyes closed, eyes open) for each participant and parameterized into aperiodic activity to 

derive the offset and exponent parameters and periodic alpha oscillatory activity to derive the alpha peak fre- 

quency and the associated power estimates. Multilevel models were run to investigate age-related trends and 

condition-dependent changes for each of these measures. We found quadratic age-related effects for both the 

aperiodic offset and exponent. In addition, we observed increases in periodic alpha peak frequency as a function 

of age. Aperiodic measures and periodic alpha power were larger in magnitude during eyes closed compared to 

the eyes open baseline condition. Taken together, these results advance our understanding of the maturational 

patterns/trajectories of brain development during early- to middle-childhood. 
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. Introduction 

Spectral analyses of the electroencephalogram (EEG) characterize

ortical brain activity in terms of frequency, and offer a valuable ap-

roach for investigating underlying neural organization and functional

aturation across development. Previous EEG and magnetoencephalog-

aphy (MEG) studies have highlighted the utility of power spectra anal-

ses and have uncovered age-related trends that reflect perceptual, cog-

itive, and behavioral states as well as their underlying neurophysi-

logy ( Buzzell et al., 2019 ; Clarke et al., 2001 ; Cohen Kadosh et al.,

015 ; Donoghue et al., 2020a ; Dustman et al., 1999 ; Gómez et al., 2017 ;

e et al., 2010 ; Jensen, and Mazaheri, 2010 ; Klimesch, 2012 ; Leno et al.,

021 ; Marshall et al., 2002 ; Schäfer et al., 2014 ; Segalowitz et al., 2010 ;
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hitford et al., 2007 ). Traditional approaches to spectral power analy-

es typically describe absolute and/or relative power within pre-defined

requency bands of interest (e.g., delta, theta, alpha, beta, gamma) and

gnore the background aperiodic activity also present in the power spec-

rum. This background aperiodic activity, commonly referred to as “1/f-

ike noise ” due to its decreased power with increased frequency, con-

ains important and meaningful physiological information that has been

hown to dynamically change with age ( Cellier et al., 2021 ; Dave et al.,

018 ; Donoghue et al., 2020a , 2020b ; He et al., 2010 ; He, 2014 , 2019 ;

ill et al., 2022 ; McSweeney et al., 2021 ; Ostlund et al., 2022 ). 

Background aperiodic activity present in the raw power spectrum is

ften characterized by two parameters, an aperiodic offset and a slope

xponent. The offset, measured as the y-intercept of lower frequency
uary 2023 
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ound of the model fit, denotes “the uniform shift in power across fre-

uencies ” ( Donoghue et al., 2020a ) and is believed to reflect overall

ates of neuronal population spiking ( Manning et al., 2009 ; Miller et al.,

014 ). In contrast, the aperiodic exponent, defined as X in the 1/ f x 

ormulation, where X reflects proportional decreases in power with in-

reases in frequency (i.e., the slope of the linear fit in log-log space),

s thought to reflect the integration of synaptic currents in the brain,

n index of excitatory (E) and inhibitory (I) balance ( Gao et al., 2017 ).

arametrization of the power spectrum also allows for the measurement

f aperiodic-adjusted periodic activity, hereon referred to as periodic

ctivity. Periodic activity describes rhythmic components in the power

pectrum (neural oscillations) measured as spectral peaks above the ape-

iodic exponent ( Donoghue et al., 2020a ). For a more detailed descrip-

ion of background aperiodic activity and reasons for parametrization

ee ( Donoghue et al., 2020a ; Ostlund et al., 2022 ). 

Changes in E:I ratios, as indexed by the aperiodic exponent, have

een shown to change substantially during the first year of life

 Schaworonkow and Voytek, 2021 ). These changes are thought to re-

ect changes in myelination, brain volume and cortical thickness. There

s evidence that E:I imbalances are associated with neurodevelopmen-

al and psychiatric disorders; attention-deficit/hyperactivity disorder

ADHD; Mamiya et al. 2021 ; Ostlund et al. 2021 ; Robertson et al. 2019 ),

chizophrenia ( Molina et al., 2020 ) and Fragile X Syndrome (FXS;

ilkinson and Nelson 2021 ). E:I imbalances are particularly evident in

nstances where pharmaceutical interventions have led to the “normal-

zation ” of E:I ratios in schizophrenia ( Molina et al., 2020 ) and in ADHD

 Mamiya et al., 2021 ; Robertson et al., 2019 ) when compared to typi-

ally developing controls. These findings suggest that aberrant changes

n the E:I balance found in neurodevelopmental disorders like ADHD

nd schizophrenia suggest that an optimal E:I balance may be of partic-

lar importance in typical brain development. Accordingly changes in

he balance between synaptic excitatory and inhibitory currents of the

erebral cortex are critical for normal cortical development and func-

ion. It should be noted that the “balance ” in excitation to inhibition

oesn’t mean that excitation is equal to inhibition ( Gao et al., 2017 ).

urther, from a developmental perspective, the regulation of E:I ratios

uring critical periods of brain development may be the result of greater

hange in inhibitory activity rather than changes in excitatory neuro-

ransmission ( Zhang et al., 2011 ). 

Although age-related decreases in absolute power tend to occur

cross all frequencies ( Rodríguez Martinez et al., 2012 ), prior develop-

ental EEG and MEG studies have noted a more nuanced and complex

elationship between brain maturation and relative slow and fast wave

ctivity. Most notably, age-related decreases in relative slow-wave/low-

requency activity (delta and theta) emerges from approximately 4-years

f age, followed by developmental increases in higher-frequency ac-

ivity (alpha, beta, and gamma) ( Dustman et al., 1999 ; Gómez et al.,

017 ; Hill et al., 2022 ; Marshall et al., 2002 ; Schäfer et al., 2014 ;

hitford et al., 2007 ). Moreover, a recent study that accounted for back-

round aperiodic activity has shown that the peak frequency and power

f the dominant neuronal oscillation (4–12 Hz range) increases with

ge, with an inflection/transition point from lower to higher frequency

and activity occurring at approximately 7-years of age ( Cellier et al.,

021 ). Both increases and decreases in EEG band power have been

hown to be functionally significant. For example, in addition to being

ost prominent during eye-closure, the alpha rhythm is associated with

he inhibition of task-irrelevant stimuli that impede attention alloca-

ion and working memory ( Haegens et al., 2022 ; Jensen, and Mazaheri,

010 ; Klimesch, 2012 ; Iemi et al., 2022 ; Voytek et al., 2017 ). Alpha os-

illations have also been found to show age-related increases in peak

requency during childhood ( Marshall et al., 2002 ) and age-related de-

reases in older adulthood linked to a diminution in executive function

 Aurlien et al., 2004 ). These findings suggest that the alpha rhythm is

n important index of cognitive development. Maturation of electro-

hysiological measures such as alpha oscillatory activity likely reflect

ge-related structural and functional change aligned to the burgeoning
2 
f perceptual, cognitive, and behavioural abilities across development

 Segalowitz et al., 2010 ). 

The current study examined baseline (resting-state) aperiodic and

eriodic activity in a sample of 502 children from the Northern Plains of

merica (South Dakota, USA). The focus of the current study is on three

stimates derived from our spectral power analyses; aperiodic offset and

xponent and periodic alpha oscillatory activity. We focus on alpha os-

illations as this is the band most commonly studied in baseline EEG

nalyses. With this focus, the purpose of the current work was two-fold.

irst, we examined age-related effects on aperiodic components from

ges 4- to 11-years. In line with previous studies, we hypothesized de-

reases in aperiodic offsets and exponents with age ( Cellier et al., 2021 ;

onoghue et al., 2020a , 2020b ; He et al., 2010 ; He, 2014 ; Hill et al.,

022 ; McSweeney et al., 2021 ; Schaworonkow and Voytek, 2021 ). Sec-

nd, we investigated age-related effects on alpha oscillatory activity

alpha peak frequency and periodic power estimates). Based on previ-

us findings ( Cellier et al., 2021 ; Dustman et al., 1999 ; Gómez et al.,

017 ; Hill et al., 2022 ; Marshall et al., 2002 ; Schäfer et al., 2014 ;

hitford et al., 2007 ), we hypothesized a positive shift in periodic alpha

eak frequency as a function of age, but did not hypothesize increases

n periodic alpha power as the children grew older ( Cellier et al., 2021 ;

ill et al., 2022 ). We conducted additional power spectra analyses for

eriodic theta, beta and gamma activity. These results are not reported

n the main body of the text but are provided in supplementary materi-

ls. 

. Methods 

.1. Participants 

Participants were originally enrolled in the Prenatal Alcohol in

IDS and Stillbirth (PASS) study described previously ( Dukes et al.,

014 ). A subset of these subjects was then reenrolled as part of the Envi-

onmental influences on Child Health Outcomes (ECHO) study in South

akota ( Blaisdell et al., 2021 ). As part of the larger study, children were

nvited to participate in an EEG assessment at one of five assessments

ased on their age. Assessments were at 4-, 5-, 7-, 9-, and 11-years-of-

ge. EEG data collection was conducted in Sioux Falls and Rapid City

South Dakota) by the Avera Center for Pediatric and Community Re-

earch (CPCR). The initial sample included 510 children (M age = 6.88

ears; SD age = 2.21; 279 (54.7%) girls). Of the 510 participants, 3 were

xcluded due to insufficient length of EEG recordings ( < 1 min) and 5

ere excluded due to poor model fits (R 

2 < 0.90) and mean squared er-

or (MAE) > 0.10). The final sample comprised 502 children (272 girls;

 age = 6.92; SD age = 2.21; Range age = 4.0–11.5 years). The sample was

redominately White (82.3%), followed by American Indian (13.3%),

nd other (4.4%). Mothers reported the following level of education:

eyond high school = 84.5%, completed high school = 9.8%, some high

chool = 5%, any primary school = 0.8%. Monthly income reported at

ime of EEG data collection was as follows: less than $500 = 2.4%, be-

ween $501 and $1000 = 5.6%, between $1001 and $2000 = 16.7%, be-

ween $2001 and $3000 = 19.1%, between $3001 and $4000 = 20.1%,

etween $4001 and $5000 = 15.5% and greater than $5001 = 18.9%.

 more detailed description of the demographic information for each

ge-group is presented in Supplementary Table 1. 

.2. Protocol/procedure 

Prior to data collection, primary caregivers provided informed con-

ent and children provided assent. After EEG cap placement, children

ere seated ∼70 cm in front of a computer monitor and completed a

otal of 3 min of alternating blocks of eyes open (EO) and eyes closed

EC) baseline (resting) recording. Instructions were presented in E-Prime

.0.10 (Psychology Software Tools, Pittsburgh, PA). Families were com-

ensated for their participation and children were given a small gift
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e.g., toy). The Avera Institutional Review Board approved all study pro-

edures. 

.3. EEG data acquisition 

EEG data was acquired using a 64-channel HydroCel Geodesic Sensor

et (vertex-reference), sampled at 500 Hz via EGI software (Net Station

ersion 5.4; Electrical Geodesics, Inc., Eugene, OR). The nets had the

our face channels (61–64) removed to measure other psychophysiolog-

cal measures (e.g., heart rate) and were not used to collect EEG. Prior

o data collection, impedance values were checked for all EEG channels

nd confirmed to be below 50 k Ω. The equipment used and protocols

ollowed during EEG acquisition were identical across both data collec-

ion sites. 

.4. EEG preprocessing 

EEG preprocessing was conducted using the EEGLAB tool-

ox ( Delorme and Makeig, 2004 ) with custom MATLAB scripts

The MathWorks, Natick, MA). EEG data were preprocessed fol-

owing the procedures described in the Maryland Analysis of

evelopmental EEG (MADE) pipeline ( Debnath et al., 2020 ,

ttps://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline). 

n short, continuous EEG data were high-pass filtered offline at 0.3 Hz

nd low-pass filtered at 49 Hz. Bad channels in the data were identified

nd removed using the EEGLAB plug-in FASTER ( Nolan et al., 2010 ).

o remove ocular artifacts, independent component analysis (ICA) was

erformed on a copied dataset with a 1 Hz high-pass filter to improve

CA decomposition. Prior to ICA, the copied dataset was segmented

nto 1 s epochs. Noisy segments of the data were rejected using a

ombined voltage threshold of + /-1000 𝜇V and spectral threshold

range -100 dB–+ 30 dB) within the 20–40 Hz frequency band to delete

ctivity likely generated by muscle artifacts. If this artifact rejection

rocedure identified an artifact in more than 20% of the epochs for

 given channel, that channel was removed from both the ICA copied

ataset and the original dataset. ICA decomposition was then run on

he copied dataset and the ICA weights copied back to the original,

ontinuous dataset. Artifactual ICs were removed from the original

ataset by using the Adjusted-ADJUST algorithm ( Leach et al., 2020 ;

ognon et al., 2011 ). 

EEG data were segmented into 2 s epochs and subjected to two addi-

ional steps of artifact rejection. First, to capture the presence of residual

cular activity not removed through ICA, we completely rejected any

pochs in which ocular channel (EGI electrodes 1, 5, 10, and 17) volt-

ges exceeded ± 150 𝜇V. Second, for any epoch in which only non-ocular

hannel voltages exceeded ± 125 𝜇V, we interpolated these channels at

he epoch level. However, if more than 10% of the channels (not con-

idering globally rejected channels) exceeded ± 125 𝜇V, we rejected the

ntire epoch instead. Any remaining missing channels were then inter-

olated using the spherical spline method ( Perrin et al., 1989 ) and data

ere referenced to the average reference. 

.5. Parameterizing the power spectra 

Power spectra were estimated from 1 to 49 Hz using Welch’s method

ith a hamming window (50% overlap) as implemented using the spec-

opo.m function in EEGLAB. Frequency resolution was set to 0.5 Hz. This

esulted in a power x channel matrix for each participant. EEG power

as then averaged across all electrodes to compute a single power spec-

rum (global measure) for each condition (eyes closed, EC and eyes open,

O). The specparam 

1 algorithm ( Donoghue et al., 2020a ) – an open
1 The name of this toolbox has been recently updated to specparam, 

reviously known as Fitting Oscillations and One-Over-F (FOOOF) 

https://github.com/fooof-tools/fooof/issues/193). 

l  

a  

e  

t  

c  

3 
ource Python package (https://github.com/fooof-tools/fooof/) - was

hen applied to these data files in Python (v3.7.0) with the frequency

ange set to 3–40 Hz. The following FOOOFGroup settings were used:

eak_width_limits = [1, 8], min_peak_height = 0.05, peak_threshold = 0.5,

ax_n_peaks = 6. In summary, specparam treats the power spectrum as a

inear combination of aperiodic components (in log-log space) and pe-

iodic activity (oscillations above the aperiodic signal). An initial aperi-

dic fit was applied to the power spectrum and subsequently removed

esulting in initial peak fits, to which Gaussian functions were itera-

ively fit and then removed. Once these fitted oscillatory peaks were

emoved from the power spectrum, a second aperiodic fit was applied

o the data. Finally, the fitted components (aperiodic and periodic ac-

ivity) were combined at which point goodness of fit measures were

omputed – variance explained (R squared) and mean absolute error

MAE). For each participant, estimates of aperiodic activity (aperiodic

ffset and exponent) were extracted in addition to measures of periodic

ctivity for the theta, alpha, beta and gamma frequency bands. To inves-

igate whether these global measures qualitatively differed at different

calp locations, we conducted additional parametrization at the follow-

ng electrode locations, fontal (E3, E6, E8, E9), fronto-central (E4, E7,

54), centro-parietal (E33, E34, E36, E38), and occipital (E35, E37, E39)

lusters. All four clusters showed similar age-related patterns and did not

ualitatively differ substantially from the global estimates. In addition,

he Cellier et al. (2021) results showed no significant age by electrode

luster interactions (frontal-midline versus parietal-midline) for aperi-

dic offset and exponent, and Hill et al. (2022) observed no significant

nteraction between age and three electrode clusters (anterior, central,

osterior) for aperiodic offset and exponent, again suggesting that age-

elated change in aperiodic activity measured via scalp electrodes ap-

ear to be a global phenomenon ( Cellier et al., 2021 ). Therefore, all

f the results reported in the main body of text are derived from the

lobal measures. Further, we chose to report global results as we did not

ave any apriori hypothesis regarding age-related scalp location differ-

nces ( Cellier et al., 2021 ; Hill et al., 2022 ). Using global measures also

elped with the issue of multiple comparisons that arises when com-

aring activity across sixty electrodes. Please see Supplement 2 (Sup-

lement_2_global_electrode_cluster_model_fits) for age-group grand av-

rage model fits, MAE for each age-group (estimates of model fit error

cross frequencies), and periodic theta and alpha estimates, for each of

he baseline conditions. For topographic maps depicting aperiodic ac-

ivity and alpha estimates for each age-group and condition, please see

upplement 3 (Supplement_3_topomaps). Statistical analysis of global

periodic and periodic activity estimates was performed via R Version

.6.1 (R Core Team, 2019). 

.6. Statistical analyses 

To examine the relationship between age and aperiodic and periodic

ctivity, we employed a series of multilevel models (MLMs) using the

lme package in R ( Pinheiro et al., 2007 ). Models were performed sep-

rately for each outcome of interest: aperiodic offset (eyes closed, EC,

yes open, EO), aperiodic exponent (EC, EO), and aperiodic-adjusted

lpha peak frequency and power (EC, EO). All models included the fol-

owing covariates; age in years, condition (EC/EO), sex, birthweight (in

rams), maternal education level, number of epochs in each condition,

nd data collection site. All predictor variables were entered as fixed

ffects, and participant ID was included as a random effect (random

ntercepts). All models included interactions terms for age by condi-

ion (EC/EO). Prior to running each model, Mahalanobis distance was

sed to account for multivariate outliers. If outliers were found ( 𝜒2 <

.001), these were removed before each model was run. In total 11 out-

iers were excluded, 1 four-year-old, 3 five-year-olds, 3 seven-year-olds,

nd 4 eleven-year-olds. We employed both linear and quadratic mod-

ls to investigate whether linear or non-linear trends better explained

he data. Maximum likelihood estimation was used to allow for model

omparison. Restricted maximum likelihood estimators were used for
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o  
he final model. The resulting p values were adjusted for multiple com-

arisons using p.adjust (p, "BH"; Benjamini and Hochberg 1995 ). If lin-

ar age-related effects (including interactions) proved to be significant

hese were then examined using emtrends , part of the emmeans package

 Russell and Lenth., 2021 ) in R. Additional correlations were run to in-

estigate the relationship between aperiodic and periodic measures (See

upplement 4). Results for aperiodic-adjusted periodic theta, beta and

amma are presented in Supplement 5. 

. Results 

A series of one-Way ANOVAs were conducted to investigate age-

roup and collection site differences in terms of data quality. Data qual-

ty was assessed by the number of epochs retained after EEG prepro-

essing in each of the two baseline conditions, eyes open (EO) and eyes

losed (EC). There was a statistically significant difference between age-

roups for both the EO condition (F(4497) = 14.576, p < 0.001) and the

C condition (F(4497) = 13.665, p < 0.001) with the trend in the data

howing greater data retention as the children grew older. In terms of

ata collection site differences, there was a statistically significant dif-

erence for the EO condition (F(1500) = 4.643, p = 0.032) but not the EC

ondition (F(1500) = 2.111, p = 0.14). In addition, a series of one-Way

NOVAs were conducted to investigate age-group and collection site dif-

erences for birthweight in grams and gestational age in weeks. There

ere no statistically significant age-group nor collection site differences

n terms of birthweight or gestational age ( Ps > 0.05). To examine as-

ociations between the categorical variables at the time of data collec-

ion, the results of a series of Pearson Chi-Square analyses revealed no

ignificant association between age-group and ethnicity ( 𝜒(8) = 7.944,

 = 0.43), age-group and reported monthly income ( 𝜒(24) = 20.914,

 = 0.64), nor age-group and maternal education level ( 𝜒(12) = 11.969,

 = 0.44). 

Among covariates included in each model (sex, birthweight (grams),

aternal education level, number of epochs retained, data collection

ite), for the aperiodic offset, only sex was a significant predictor

 p adjust = 0.001). For the aperiodic exponent only data retention, i.e.,

umber of epochs retained after preprocessing, was a significant pre-

ictor ( p adjust = 0.01). For alpha center frequency no covariates were

ignificant predictors. For periodic alpha power data retention was a

ignificant predictor ( p adjust = 0.01). For periodic beta center frequency

ollection site was a significant predictor ( p adjust = 0.01). See Table 1

or a breakdown of sample characteristics, measures of aperiodic and

eriodic activity and model fits. 

.1. Aperiodic offset 

The likelihood ratio test was used to compare the linear MLM model

o the same model with a quadratic term for age. The model with the

uadratic term fit the data significantly better than the linear model,
2 (15) = 13.579, p = 0.001. As predicted, we observed significant main

ffects for age ( F (2, 491) = 16.761, p adjust < 0.001) and condition ( F (1,

91) = 470.721, p adjust < 0.001) showing that offset values demonstrated

 concave non-linear trend when collapsing across EC and EO condi-

ions. For illustrative purposes, both conditions are plotted in Fig. 1 , C.

ffset values were significantly greater in magnitude during the EC com-

ared to the EO condition ( b = 0.288, SE = 0.017, CI[0.253 0.323]). No

ignificant two-way interaction was found between age and condition

 F (2, 491) = 3.071, p adjust = 0.092). 

.2. Aperiodic exponent 

Similarly, the likelihood ratio test was used to compare the linear

LM model to the same model with a quadratic term for age. The

odel with the quadratic term fit the data significantly better than the

inear model, 𝜒2 (15) = 22.673, p < 0.001. As predicted, we observed

ignificant main effects for age ( F (2, 491) = 12.075, p adjust < 0.001)
4 
nd condition ( F (2, 491) = 427.016, p adjust < 0.001) showing that expo-

ent values demonstrated a concave non-linear trend when collapsing

cross EC and EO conditions. For illustrative purposes, both conditions

re plotted in Fig. 1 , C. Exponent values were significantly greater in

agnitude during the EC compared to the EO condition ( b = 0.248,

E = 0.015, CI[0.216 0.279]). No significant two-way interaction was

ound between age and condition ( F (2, 491) = 3.592, p adjust = 0.056). 

.3. Aperiodic-adjusted periodic alpha peak frequency 

Again, the likelihood ratio test was used to compare the linear MLM

odel to the same model with a quadratic term for age. The model with

he quadratic term did not fit the data significantly better than the linear

odel, 𝜒2 (22) = 3.213, p = 0.200. For periodic alpha peak frequency, we

bserved a significant main effect for age ( F (1, 454) = 107.117, p adjust <

.001) but not for condition ( F (1, 385) = 1.162, p adjust = 0.511) showing

hat periodic alpha peak frequency increased with age when collapsing

cross EC and EO conditions. For illustrative purposes, both conditions

re plotted in Fig. 2 B. Examining the estimates of slopes for this age-

elated linear trend confirmed this was the case ( b = 0.135, SE = 0.013,

I[0.109 0.160]). See Fig. 2 , B. No significant two-way interaction was

ound between age and condition ( F (1, 385) = 1.447, p adjust = 0.229). 

.4. Aperiodic-adjusted periodic alpha power 

For periodic alpha power estimates the linear MLM model proved to

e sufficient. That is, including the quadratic term for age in the model

id not significantly improve the model fit 𝜒2 (15) = 1.353, p = 0.508.

or periodic alpha power, we observed a significant main effect for

ondition ( F (1, 385) = 9.888, p adjust = 0.007) but not for age ( F (1,

54) = 0.017, p adjust = 0.893) showing that alpha power was signifi-

antly increased during EC compared to the EO condition ( b = 0.310,

E = 0.011, CI[0.288 0.332]) ( Fig. 2 , D). We observed a significant two-

ay interaction between age and condition ( F (1, 385) = 33.128, p adjust <

.001). Examining the estimates of slopes for this age-related linear trend

howed that periodic alpha power pattern of change over time differed

etween EC and EO conditions ( b = 0.310, SE = 0.011, CI[0.288 0.332]).

ee Fig. 2 D. 

. Discussion 

In the current cross-sectional study, we adopted a novel approach to

xamine age-related change in aperiodic and periodic activity across

 relatively large sample of pre- and school-aged children. Previous

tudies that employed parametrization of the power spectrum to in-

estigate aperiodic EEG activity identified negative relationships be-

ween aperiodic activity and age during different developmental stages

 Cellier et al. 2021 , age-range 3–24 years; Donoghue et al. 2020a , age

ange 20–30, 60–70 years; Donoghue et al. 2020b , age-range 6–44 years;

ill et al. 2022 , age-range 4–12 years; McSweeney et al. 2021 , age-range

3–15 years; Schaworonkow and Voytek 2021 , age range 1–7 months).

ere, in a large sample of children from 4- to 11-years, we observed

on-linear age-related trends for both aperiodic offsets and exponents.

onvergent with prior developmental work at other ages ( Hill et al.,

022 ; McSweeney et al., 2021 ), we also observed condition-dependent

ifferences in both offset and exponent, such that aperiodic offsets were

reater in magnitude during EC compared to EO conditions. Aperiodic

xponents were greater in magnitude (steeper 1/f-like spectral slopes)

n EC compared to the EO condition. 

We observed linear increases with age in alpha peak frequency which

as not condition-dependent. That is, periodic alpha peak frequency

id not differ between EC and EO conditions. For periodic alpha power,

e observed the expected condition-dependent effects with periodic al-

ha power greater during EC compared to the EO condition. We also

bserved a significant two-way interaction between age and condition
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Table 1 

Sample size, aperiodic and aperiodic-adjusted periodic activity, and model fits. 

Aperiodic activity Aperiodic-adjusted periodic activity 

Mean(SD) Mean(SD) 

Age (years) N Offset Exponent Theta (3–8 Hz ) Alpha (8–13 Hz ) Beta (13–30 Hz ) Gamma (30–40 Hz ) 

4 years 

EC 87 1.82(0.40) 1.72(0.33) EC n = 80 n = 70 n = 55 n = 80 

CF 6.34(1.17) 8.88(0.50) 19.66(4.08) 34.15(3.85) 

PW 0.50(0.26) 0.77(0.30) 0.14(0.08) 0.22(0.13) 

EO 87 1.52(0.35) 1.47(0.29) EO n = 71 n = 66 n = 52 n = 85 

CF 6.07(1.30) 8.94(0.55) 22.59(3.03) 33.16(3.67) 

PW 0.41(0.21) 0.54(0.17) 0.14(0.08) 0.18(0.10) 

5 years 

EC 126 1.77(0.36) 1.76(0.26) EC n = 111 n = 112 n = 88 n = 107 

CF 6.59(1.19) 9.01(0.61} 18.74(3.51) 33.63(3.65) 

PW 0.41(0.25) 0.82(0.27) 0.17(0.10) 0.21(0.14) 

EO 126 1.48(0.41) 1.50(0.33) EO n = 97 n = 98 n = 85 n = 116 

CF 6.05(1.18) 9.12(0.61) 21.12(3.22) 32.68(3.84) 

PW 0.33(0.20) 0.58(0.25) 0.15(0.10) 0.18(0.10) 

7 years 

EC 164 1.86(0.33) 1.84(0.24) EC n = 127 n = 151 n = 137 n = 127 

CF 6.56(1.16) 9.23(0.68) 17.75(2.91) 33.67(3.79) 

PW 0.45(0.60) 0.84(0.27) 0.23(0.13) 0.19(0.15) 

EO 164 1.57(0.36) 1.60(0.29) EO n = 121 n = 138 n = 132 n = 128 

CF 6.12(1.21) 9.21(0.66) 19.36(3.72) 33.44(3.53) 

PW 0.30(0.18) 0.54(0.25) 0.19(0.13) 0.19(0.13) 

9 years 

EC 69 1.66(0.30) 1.73(0.25) EC n = 44 n = 68 n = 58 n = 49 

CF 6.36(1.31) 9.45(0.73) 17.34(2.74) 33.32(4.16) 

PW 0.35(0.24) 0.83(0.31) 0.28(0.16) 0.24(0.19) 

EO 69 1.40(0.32) 1.52(0.27) EO n = 45 n = 60 n = 53 n = 49 

CF 5.84(1.34) 9.43(0.76) 18.13(3.49) 33.21(3.58) 

PW 0.23(0.12) 0.48(0.25) 0.25(0.16) 0.25(0.19) 

11 years 

EC 56 1.54(0.33) 1.62(0.29) EC n = 33 n = 55 n = 53 n = 37 

CF 6.72(1.16) 9.98(0.89) 17.44(3.06) 33.69(4.08) 

PW 0.32(0.25) 0.94(0.32) 0.30(0.14) 0.20(0.14) 

EO 56 1.35(0.34) 1.47(0.31) EO n = 33 n = 51 n = 45 n = 44 

CF 6.07(1.38) 10.01(1.09) 17.70(3.56) 33.23(3.68) 

PW 0.20(0.14) 0.55(0.25) 0.23(0.13) 0.21(0.15) 

Model fit 4 years 5 years 7 years 9 years 11 years 

Rˆ2 

EC 0.98(0.01) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.01) 

EO 0.98(0.01) 0.98(0.01) 0.99(0.01) 0.99(0.0) 0.98(0.01) 

MAE 

EC 0.03(0.01) 0.03(0.01) 0.03(0.00) 0.03(0.00) 0.03(0.00) 

EO 0.03(0.01) 0.03(0.01) 0.03(0.01) 0.03(0.00) 0.03(0.01) 

Note: EC = eyes closed condition; EO = eyes open condition; CF = center frequency; PW = log power; Rˆ2 = variance explained by specparam model fit; MAE = mean 

absolute error of specparam model fit. 
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S  
uch that periodic alpha power increased as a function of age during the

C condition but not the EO condition. 

.1. Age-related change in aperiodic activity 

In the current study, quadratic age-related trends were found for

oth offset and exponent values. The direction of these results is

ot in agreement with previous findings that have shown negative

inear trends with increases in age. For example, previous studies

ave observed negative linear trends during early-to-middle childhood

 Hill et al., 2022 ), when comparing early childhood to young adults

 Cellier et al., 2021 ; He et al., 2019 ), young adults to older adults

 Dave et al., 2018 ) and when examining longitudinal change during

arly-adolescence ( McSweeney et al., 2021 ). Instead, we observed in-

reases in aperiodic offsets and exponents from 4-years-of-age ∼7-years-

f-age followed by decreases in both aperiodic components up to 11-

ears-of-age. Age-related increases in aperiodic activity followed by age-

elated reductions in offset and exponent may be indicative of an inflec-

ion point or shift/transition from greater power at lower frequencies to

ncreases in power at higher frequencies that occurs at approximately

-years-of-age ( Cellier et al., 2021 ). 
5 
Reductions in broadband power (aperiodic offset) are likely to be

riven not only by changes to neural communication but also may

eflect developmental changes to brain morphology. For example, a

ultimodal study using both EEG and magnetic resonance imaging

MRI) of 138 participants aged 10-–30-years-of-age, noted that age-

elated changes in absolute EEG power in slow-range frequency bands

uring baseline were associated with declines in gray matter volume

 Whitford et al., 2007 ). Moreover, while age-related changes in pre-

ubescent cortical thickness (CT), surface area (SA) and overall corti-

al volume (CV) appear to show differing levels of complexity of cor-

ical growth that is spatially defined, other studies have shown linear,

uadratic and cubic developmental trajectories in cortical development

 Shaw et al., 2008 ; Sussman et al., 2016 ). In a sample of 375 typi-

ally developing children and young adults (age range 3.5–33-years),

haw et al. (2008) showed that increases in CT occur during early child-

ood with peak thickness across several regions occurring between the

ges of 7- and approximately 10-years-of-age followed by CT decreases

ith advancing age. A second study by Sussman et al. (2016) utiliz-

ng a sample 192 gender-matched participants (age range 4–18-years,

6 females) showed quadratic changes in CV in different brain regions.

tructural age-related non-linear trends (at the level of the cortical ar-
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Fig. 1. (A) Power spectral density (PSD) for each age group during eyes closed and eyes open baseline conditions (B) Aperiodic fits by age-group eyes closed and 

eyes open conditions (C) Age-related change in the aperiodic offset and exponent (quadratic age effect) for eyes closed and eyes open conditions. 

Fig. 2. (A) Plot showing periodic alpha power for eyes closed (EC) condi- 

tion (B) Plot showing linear increases in periodic alpha peak frequency 

with increases in age (C) Plot showing periodic alpha power for eyes 

closed (EO) condition (D) Plot showing age-related change in periodic 

alpha power for eyes closed and eyes open (EC and EO) conditions. 
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hitecture) may help to explain the age-related quadratic trajectory we

bserved for offset values. Therefore, it is possible that maturational

hanges in the aperiodic offset as measured via scalp EEG recordings in-

ex underlying morphological change and synaptic pruning, leading to

ncreased efficiency in neuronal transmission associated with reductions

n superfluous activity ( Segalowitz et al., 2010 ). A note of caution re-

ates to the fact that brain maturation occurs in concert with thickening

f the skull. Increases in skull thickness leads to higher resistance which

esults in lower amplitude EEG signals. Additional research is needed to

larify whether decreases in broadband power as measured with scalp

EG reflect changes in underlying brain morphometry and are partially

xplained by changes in resistance/bone density. 

We observed that offset magnitudes were significantly reduced dur-

ng EO compared to the EC condition. Why this was the case is not

mmediately apparent. However, one important consideration is that

hanges in offset and exponent values are often highly correlated when

here is a rotation of the power spectrum around a non-zero frequency

 Donoghue et al., 2020a ; Ostlund et al., 2022 ). In the current study, off-

et magnitudes positively correlated with exponent magnitudes during

oth baseline conditions (EC r s = 0.838, EO r s = 0. 845). Condition-
6 
ependent reductions in offset magnitudes during the EO condition oc-

urring in concert with reductions in exponent, may be indicative of a

otation in the power spectrum (flatter spectral slope) or the engagement

f attentive processes and/or arousal levels ( Hill et al., 2022 ) or both.

or example, the active processing of visual stimuli has been shown to

esult in flatter spectral slopes ( He et al., 2010 ; Podvalny et al., 2015 ).

hat is, increases in excitation relative to inhibition during EO compared

o the EC condition may be indicative of greater engagement/arousal.

his proposition is supported by our findings that exponent values were

ignificantly greater in magnitude during the EC compared to the EO

ondition. With offset and exponent values showing such high correla-

ions, one would expect that decreases in exponent occur in concert with

ecreases in offset. See Supplement 4. 

As reported above, significant monotone decreases in exponent mag-

itudes with increases in age were not found. These findings may at

rst appear somewhat surprising given that previous developmental

tudies comprising participants (or sub-populations) of similar age have

hown linear decreases in exponent magnitude with increases in age

 Cellier et al., 2021 ; Dave et al., 2018 ; Donoghue et al., 2020a , 2020b ;

e et al., 2010 ; He, 2014 , 2019 ; Hill et al., 2022 ; Ostlund et al., 2022 ).
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owever, differences in sample size (particularly during early child-

ood, for example 4-, 5- and/or 7-years-of-age) and/or sample charac-

eristics may help to explain the inconsistency between the current study

nd the two earlier studies. Cellier et al. (2021) had a smaller sample

 N = 25 for 4–7 years and wider age range which included adolescents

nd adults). Hill et al. (2022) also had significantly smaller sample size

 N = 139). The quadratic age-related effects on exponent values suggest

hat developmental changes in background aperiodic activity may be

ore complex and developmentally dynamic than previously described.

uture studies using a comparative and/or larger sample size should in-

estigate further what appears to be an inflection point that occurs at

pproximately 7-years-of-age, possibly pointing to changes that might

ccur during specific developmental periods (see Cellier et al., 2021 ). 

Changes in exponent have been associated with changes in

he balance between excitatory and inhibitory neurotransmission

 Donoghue et al., 2020a ; Gao et al., 2017 ; He, 2014 ; Voytek et al.,

015b ). Excitatory and inhibitory currents in neural populations are

argely driven by excitatory (glutamate) and inhibitory (GABA) neuro-

ransmitter levels and changes in this ratio are likely to occur during

rain maturation and may play an important role for the acquisition of

ew skills. For example, using single-voxel proton magnetic resonance

pectroscopy ( 1 H-MRS), Cohen Kadosh et al. (2015) found that increase

n glutamate/GABA ratios in the inferior frontal gyrus (IFG) positively

orrelated with face processing proficiency during childhood ( N = 14,

ge range 7–10-years) but not during adulthood ( N = 14, age range

0–23-years). In addition, the authors also note that this relationship

as not found in other brain regions such as the inferior occipital gyrus

IOG), a phylogenetically older region of the brain ( Gogtay et al., 2004 ).

urther, this relationship was dissociable from cortical gray matter vol-

me leading to the speculation that not only are glutamate/GABA ratios

mportant during early developmental stages, but those changes in E:I

atios may precede structural change and the acquisition of new cog-

itive abilities. A study by Voytek et al. (2015b) reported associations

etween changes in the spectral slope (flattening of the slope) and cogni-

ive decline as measured via a working memory task. This was evident

n the older adult participants (60 –70-years) but not in the younger

dults (20–30-years). 

In sum, these studies point to the importance of dynamic alterations

n excitatory/inhibitory balance during different developmental peri-

ds and cognitive stages of human brain development, as well as the

ole E:I ratios may play in instigating morphological change. More-

ver, significant differences between typical and atypical neurodevelop-

ent have been previously noted when examining comparative change

n the power spectra in ADHD ( Mamiya et al., 2021 ; Ostlund et al.,

021 ; Robertson et al., 2019 ) and schizophrenia ( Molina et al., 2020 )

hen compared to typically developing controls. Based upon the cur-

ent findings of age-related quadratic effects and previous work, we

peculate that changes in exponent may be more evident during

pecific developmental periods or within particular clinical popula-

ions, for example during infancy ( Schaworonkow and Voytek, 2021 ),

arly-adolescence ( McSweeney et al., 2021 ) or during older adulthood

 Voytek et al., 2015b ), or in clinical groups with ADHD ( Mamiya et al.,

021 ; Ostlund et al., 2021 ; Robertson et al., 2019 ) and schizophrenia

 Molina et al., 2020 ), in which E:I ratios may be particularly important.

urthermore, when compared to typically developing controls, group

ifferences in spectral slope have been observed in certain genetic con-

itions. For example, Rett syndrome is associated with a steeper 1/f-like

lope. This condition is characterized by developmental regression that

ccurs approximately between 6 and 18 months of age ( Roche et al.,

019 ). FXS is a genetic neurodevelopmental condition caused by an ex-

ansion of the CGG triplet related FMR1 gene on the X chromosome

esulting in a FMRP protein deficiency. FXS is associated with an E/I

mbalance and mouse models have reversed phenotypes in FMR1 knock-

ut mice through the administration of GABA agonists ( Wilkinson and

elson, 2021 ). Notably, in FXS the aperiodic spectral exponent ap-

ears to be reduced, a flatter 1/f-like spectral slope ( Wilkinson and
7 
elson., 2021 ). Furthermore, there is some evidence suggesting that

 steeper spectral slope in preterm infants is associated with autism

isk ( Shuffrey et al., 2022 ). Future studies using multimodal imaging

pproaches such as EEG and MRS may better elucidate the relation-

hip between excitatory and inhibitory neural activity during specific

evelopmental periods and/or between select clinical populations and

ealthy controls. 

.2. Age-related change in periodic alpha oscillatory activity 

We observed linear age-related change in alpha peak frequency.

hat is, alpha peak frequencies increased with age. These changes in

lpha peak frequency are largely in agreement with previous findings

 Cellier et al., 2021 ; Cragg et al., 2011 ; He et al., 2019 ; Hill et al.,

022 ; Marcuse et al., 2008 ; Marshall et al., 2002 ; Miskovic et al., 2015 ;

erone et al., 2018 ; Rodríguez-Martínez et al., 2017 ; Soroko et al.,

014 ). It has been proposed that shifts in alpha peak toward higher

requency coincide with increases in speed in neuronal communication

 Segalowitz et al., 2010 ). Furthermore, previous work has shown the as-

ociation between alpha peak frequency and cognitive ability in children

ith autism spectrum disorder (ASD) and age-matched non-autistic con-

rols ( Dickinson et al., 2018 ). The observed age-related effect in alpha

eak frequency in the current study corroborate the proposition that al-

ha peak frequency may be an informative metric of neurodevelopmen-

al change linked to increases in neuronal communication efficiency and

resumably cognitive ability ( Leno et al., 2021 ; Dickinson et al., 2018 ;

arshall et al., 2002 ; Segalowitz et al., 2010 ). Empirical results show-

ng increases in alpha peak frequency with age appear to be replicable

nd robust findings, and indicate a shift from lower to higher frequency

ctivity during neurotypical development. Consequently, developmen-

al trajectories in alpha activity may point to the maturation and/or

efinement in cognitive control, goal-directed behavior, impulsivity and

orking memory capacity. 

For periodic alpha power, we observed a significant main effect of

xperimental condition showing the expected increased periodic alpha

ower during EC compared to the EO condition ( Isler et al., 2022 ).

e also observed a significant two-way interaction between age and

ondition showing that periodic alpha power increased with increases

n age during the EC condition but not during the EO condition. This

s not altogether consistent with a previous finding showing no age-

elated increases in periodic alpha power during the EC baseline con-

ition ( Hill et al., 2022 ) but is consistent for the EO baseline condi-

ion ( Cellier et al., 2021 ; Hill et al., 2022 ), i.e., no significant age-

elated increases in periodic alpha power. It should be noted that in

he Hill et al. (2022) study, although not meeting the threshold for sig-

ificance, the association between increases in periodic alpha power

ith age during the EC condition approached significance ( p = 0.08),

ossibly indicating an age-related trend in their sample. However, and

gain, differences in sample size and/or sample characteristics may help

o explain these inconsistencies. 

Notably, not all participants in our sample exhibited aperiodic-

djusted alpha peak activity during resting state eyes closed and eyes

pen EEG recordings. For example, alpha activity (8–13 Hz) was present

n 80% of 4-year-olds, 89% in 5-year-olds, 92% in 7-year-olds, and 98%

n both the 9- and 11-year-old participants. For eyes open resting state

ecordings alpha activity was present in 76% of 4-year-olds, 78% of 5-

ear-olds, 84% of 7-year-olds, 87% of 9-year-olds and 91% of 11-year-

lds. On average, aperiodic-adjusted alpha peaks were detected in 91%

f participants during eyes closed recordings and in 82% of participants

uring eyes open recordings. It should also be noted that peak detec-

ion above the aperiodic signal in the theta band (3–8 Hz) decreased as

he children grew older. For example, during eyes closed resting state

ecordings, theta peaks were detected in 92% of 4-year-olds, 88% of 5-

ear-olds, 77% of 7-year-olds, 64% of 9-year-olds and 59% of 11-year-

lds. During eyes open resting state recordings, theta peaks were de-

ected in 92% of 4-year-olds, 77% of 5-year-olds, 74% of 7-year-olds,



M. McSweeney, S. Morales, E.A. Valadez et al. NeuroImage 269 (2023) 119925 

6  

a  

c  

i

 

w  

o  

E  

d  

i  

H  

d  

T  

t  

t  

a  

r  

O  

a  

t  

l  

t  

4

 

a  

f  

c  

f  

t  

v  

w  

g  

c  

t  

c  

G  

m  

i  

l  

m  

o  

p  

a  

r  

i  

s  

w  

i  

t  

g  

m  

s  

s  

a  

e  

d  

s  

m

5

 

f  

i  

a  

T  

i  

o  

q  

d  

q  

m  

t  

u  

b  

r

D

 

q  

p

F

 

H

D

C

o  

M  

V

r  

W  

W  

v  

E  

I  

M

D

A

 

a  

b

S

 

t

R

A  

 

B  

 

B  

 

5% of 9-year-olds and 59% of 11-year-solds. On average, aperiodic-

djusted theta peaks were detected in 79% of participants during eyes

losed recordings and in 73% of participants during eyes open record-

ngs. 

When we compare our findings to those of the Hill et al. (2022) study

hich comprised participants with a very similar age-range (4–12-years-

f-age) and which also examined resting state eyes open and eyes closed

EG recordings, across all participants ( N = 139) alpha peaks were

etected in 94% of participants during eyes open and 99% of partic-

pants during eyes closed resting state recordings. Moreover, in the

ill et al. (2022) study far fewer participants exhibited peaks within the

elta (1–3 Hz), theta (3–7 Hz), and gamma ( > 30 Hz) frequency bands.

his is consistent with the Ostlund et al., 2022 study which reported less

han half of their sample showing clear aperiodic-adjusted theta peak ac-

ivity. Again, in our sample ( N = 502), on average, aperiodic-adjusted

lpha peaks were detected in 91% of participants during eyes closed

ecordings and in 82% of participants during eyes open recordings.

ther than the differences in how bands were defined ( Hill et al. 2022

lpha band was defined as 7–13 Hz), the lower percentages of peak de-

ection in the alpha band in our sample may have resulted from the much

arger sample size. This is consistent with the notion that there appears

o be a shift from lower to higher frequency activity as a function of age.

.3. Limitations and future directions 

The current study has a number of limitations. First, the findings

re limited to spontaneous neural activity. Second, we did not account

or other exposure which may have significantly contributed to earlier

hanges in EEG activity. e.g., maternal psychological states during in-

ancy or during early-to-middle childhood or psychotropic medications

aken during pregnancy. In addition, we did not adjust for other en-

ironmental factors such as parenting styles. Third, the current study

as cross-sectional and was therefore unable to track individual lon-

itudinal change. Also, the EC and EO baseline conditions were not

ounterbalanced. Lastly, there are some earlier data that suggest that

he estimation of the aperiodic slope may differ for very low frequen-

ies relative to higher frequencies (e.g., 0.1–1 Hz compared to 3–40 Hz,

erster et al. 2022 ; He et al. 2010 ). There is the possibility that this

ight lead to a misestimation of the offset. Future studies should exam-

ne the relationships between spontaneous and task-related EEG activity

ongitudinally and, where possible, investigate how changes in brain

orphology (cortical thickness and/or curvature) covary with aperi-

dic and periodic activity. Future investigations may also want to ex-

lore how aperiodic activity changes during wake versus sleep states

cross infancy or during early-to-middle childhood. If we assume ape-

iodic activity indexes both shifts in broadband power and the relative

nhibitory to excitatory neurotransmission activity, one might expect to

ee condition-dependent change in aperiodic activity during different

ake and sleep states with sleep states possibly resulting in increased

nhibitory activity (steeper 1/f-like spectral slopes). Some evidence for

his comes from a recent study by Colombo et al. (2019) that investi-

ated changes in spectral exponent during baseline and after the ad-

inistration of three anaesthetics (propofol, xenon, and ketamine). In a

ample of fifteen healthy participants (age range 18–28) steeper spectral

lopes were evident during anesthesia when compared to eyes closed

nd eyes open baseline conditions. Much less is known in relation to

arly neurodevelopmental stages and therefore investigating condition-

ependent change in aperiodic activity during different wake and sleep

tates during early neurodevelopmental stages may prove to be infor-

ative. 

. Conclusion 

Spectral analyses offer a valuable approach to investigating brain

unctioning across development. Parametrization of the power spectrum

s a useful tool that can uncover significant maturational patterns in EEG
8 
ctivity that have been largely overlooked by traditional approaches.

he current study corroborates and extends previous findings show-

ng shifts from lower to higher frequency activity in a unique sample

f children from 4- to 11-years-of-age. We found predictably complex

uadratic age effects for both aperiodic offsets and exponents. In ad-

ition, we observed significant age-related effects on alpha peak fre-

uency. Taken together, these results advance our understanding of the

aturational patterns/trajectories of brain development during early-

o middle-childhood. Furthermore, the approach adopted highlights the

tility of parametrization of the power spectrum to investigate 1/f-like

ackground cortical activity to independently quantify important neu-

odevelopmental phenotypes. 
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