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A B S T R A C T   

This EEG methods tutorial provides both a conceptual and practical introduction to a promising data reduction 
approach for time-frequency representations of EEG data: Time-Frequency Principal Components Analysis (TF- 
PCA). Briefly, the unique value of TF-PCA is that it provides a data-reduction approach that does not rely on 
strong a priori constraints regarding the specific timing or frequency boundaries for an effect of interest. Given 
that the time-frequency characteristics of various neurocognitive process are known to change across develop
ment, the TF-PCA approach is thus particularly well suited for the analysis of developmental TF data. This 
tutorial provides the background knowledge, theory, and practical information needed to allow individuals with 
basic EEG experience to begin applying the TF-PCA approach to their own data. Crucially, this tutorial article is 
accompanied by a companion GitHub repository that contains example code, data, and a step-by-step guide of 
how to perform TF-PCA: https://github.com/NDCLab/tfpca-tutorial. Although this tutorial is framed in terms of 
the utility of TF-PCA for developmental data, the theory, protocols and code covered in this tutorial article and 
companion GitHub repository can be applied more broadly across populations of interest.   

1. Introduction 

1.1. Motivation and background 

Electroencephalography (EEG) affords many strengths as a tool for 
the developmental cognitive neurosciences. EEG reflects the direct 
readout of neural activity with millisecond precision and provides a non- 
invasive means of measuring neural oscillations (Nunez et al., 2006). At 
the same time, EEG is relatively inexpensive and easy to collect, both in 
and outside the lab, and is generally well-tolerated across the lifespan. 
At the analysis stage, time-domain EEG data can be transformed into 
time-frequency (TF) representations reflecting dynamic changes within 
particular frequency bands in response to events of interest (Cohen, 
2014). TF approaches can reveal neurocognitive phenomena missed by 
more traditional EEG analysis techniques (e.g., Event-related-potentials; 
ERPs). However, decomposing EEG data into TF representations also 
exponentially increases the multiple comparisons problem, necessi
tating appropriate data reduction methods. With a focus on develop
mental cognitive neuroscience, the current article provides both a 

conceptual and practical introduction to a promising data reduction 
approach for TF data: Time-Frequency Principal Components Analysis 
(TF-PCA). Briefly, the unique value of TF-PCA, compared to other data 
reduction approaches, is that it provides a data-reduction approach that 
does not rely on strong a priori constraints regarding the specific timing 
or frequency band of interest (Bernat et al., 2005). Given that the time 
and frequency characteristics of neurocognitive process are known to 
change across development, we believe that TF-PCA may be a particu
larly powerful, yet currently underutilized, approach for the analyses of 
developmental TF data. 

1.2. Brief introduction to EEG time-frequency (TF) representations 

A TF representation depicts a time-varying signal, such as an EEG 
waveform, in terms of frequency-specific activity (e.g., power magni
tude) as a function of time. A TF representation can be plotted as a 
spectrogram, with two spatial dimensions (the x and y axes) and a third, 
non-spatial dimension that is mapped to color values (see Fig. 1). In this 
case, the x-axis delineates time in sample points (relative to an event of 
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interest), the y-axis delineates frequency in bins, and the activity of in
terest at each point in the TF representation is represented by color along 
the non-spatial z-dimension. There are multiple approaches for decom
posing time domain EEG signals into TF representations, but the most 
common approach is a continuous wavelet transform (CWT) using 
Morlet wavelets (Cohen, 2014). The CWT/Morlet approach has several 
advantages and is widely used, and moreover, we recommend the 
CWT/Morlet approach as a useful analysis approach. At the same time, it 
is important to note that one of the major drawbacks of this approach is 
that it tends to produce “smearing” across time in lower frequencies and 
smearing across frequencies in higher frequencies (see Fig. 1 in this 
article, as well as Bernat et al., 2005). If a researcher has strong prior 
knowledge about the exact frequency boundaries for an effect of inter
est, then parameters governing the CWT/Morlet approach (i.e., the 
number of cycles in the mother wavelet) can be modified to yield 
improved time-frequency resolution for a particular frequency band 
(Cohen, 2014). Unfortunately, it is often the case in developmental 
research that the exact frequency boundaries of a given effect are un
known or not well-characterized a priori. As a result, researchers 
employing the CWT/Morlet approach are often left with TF represen
tations that contain substantial smearing in time and frequency. 

In contrast to CWT with Morlet wavelets, the Cohen’s Class Reduced 
Interference Distribution (RID) approach is able to produce relatively 
higher resolution in both the time and frequency domains, simulta
neously across all frequency bands (see Fig. 1; Bernat et al., 2005). Thus, 
the Cohen’s Class RID approach is less reliant on prior knowledge about 
the exact frequency boundaries for a given effect, making this approach 
well-suited for developmental contexts in which such a priori knowledge 
is lacking. As a pre-processing step for TF-PCA, the Cohen’s Class RID 
approach offers several advantages relative to CWT, including uniform 
time-frequency resolution, global features (e.g. harmonics), 
time-frequency shift and shape invariance, among others (Bernat et al., 
2005). Nonetheless, while our work, and the examples in this paper, are 
focused on RIDs, the core logic of the TF-PCA is applied as readily to any 
TF transform approach, including CWT with Morlet wavelets. 

1.3. Data reduction approaches for TF representations of EEG 

Regardless of the method used to compute TF representations, a 

difficulty that naturally arises is how to statistically analyze TF repre
sentations of EEG data, or more specifically, how to prepare data for 
statistical analyses. There are near infinite possible ways to deal with 
such a problem, and a complete review of all existing methods is beyond 
the scope of this article. However, before turning to TF-PCA, the focus of 
this article, we first overview a necessarily incomplete subset of all 
possible approaches to the problem of how to statistically analyze TF 
representations of EEG data and/or how to prepare data for statistical 
analyses. 

One set of approaches involves largely avoiding data reduction 
techniques, instead subjecting all points in the TF representation (and/ 
or all electrode locations) to statistical analysis and to correct for the 
large number of multiple comparisons in some way (e.g., via the LIMO 
Toolbox; Pernet et al., 2011). Such approaches can be particularly useful 
for detecting effects of interest that exhibit effect sizes large enough to 
withstand the necessary correction for multiple comparisons. However, 
it is often beneficial to perform data reduction prior to statistical anal
ysis, in order to maximize statistical power to detect more subtle effects. 
One of the most common approaches to TF data reduction is to define a 
rectangular “region of interest” (ROI), in both time and frequency, and 
then compute the average value within this ROI (Cohen, 2014). This 
approach can work well in situations where the researcher has prior 
knowledge about the time-frequency boundaries for the effect of inter
est. However, as previously noted, such a priori knowledge is often 
lacking in developmental contexts. 

There are alternatives to the standard ROI approach for TF data 
reduction. For example, one promising method is to define the frequency 
boundaries of the ROI using a data-driven method (Cohen, 2021). 
Alternatively, Independent Components Analysis (ICA) can be employed 
as a preprocessing step, prior to computing TF representations. Briefly, 
ICA involves computing a set of spatial weighting matrices to separate 
the raw EEG signal into a set of mutually independent (non-gaussian) 
components (Delorme & Makeig, 2004). Each independent component 
(IC) is defined by its spatial weighting matrix, which reflects the relative 
contribution of each electrode to the IC. When this IC weighting matrix 
is multiplied by the raw EEG, this allows for recovering the component 
activations (temporal activity) of a given IC, which can, in turn, be 
converted into a TF representation. To this end, ICA provides a 
data-driven method of isolating independent sources of scalp-recorded 

Fig. 1. Comparison of time-frequency representations produced using Morlet wavelets vs. Cohen’s Class Reduced Interference Distributions (RID). 
This figure was created using a subset of the original figures (with modification) appearing in Bernat et. al. (2005). 
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neural activity, each of which is associated with a TF representation for 
the activity of interest (e.g., power magnitude). However, this still leaves 
the researcher with a full TF surface to statistically analyze, often 
requiring the additional application of a multiple comparison correction 
approach. Note that it is possible to apply ICA to a TF representation 
itself (Inuso et al., 2007; Mika et al., 2020), which may reflect a prom
ising new direction in the use of ICA for data reduction in the context of 
TF analyses. It is also possible to apply ICA at the rotation step in 
TF-PCA, following similar logic as that described for time domain ana
lyses (ERPs; (Dien, 2010)). However, to our knowledge, applying ICA to 
the TF representation is, at least currently, primarily employed only for 
artifact removal purposes in the EEG literature (Inuso et al., 2007) and 
applying ICA at the rotation step in TF-PCA has not been widely 
explored. Similarly, although it is possible to perform group-level EEG 
ICA (Eichele et al., 2011), at least currently, EEG ICA is most commonly 
applied at the individual level for EEG data. As a result, a more general 
drawback of standard EEG ICA pipelines is that, because they are typi
cally performed at the participant level, there is an inherent difficulty 
associated with determining how to relate (i.e. cluster) unique ICA 
components across participants for group-level statistics. 

TF-PCA represents a data-driven data reduction approach, allowing 
researchers to move from the complete set of points in the TF repre
sentation to a substantially reduced set of principal components (Bernat 
et al., 2005). Thus, unlike the standard EEG ICA approach that still re
quires multiple comparisons testing for each component’s TF represen
tation, TF-PCA reduces the TF representation down to a small number of 
principal components (often in the range of ~1–5 components) that can 
be statistically compared across participants or conditions. Relatedly, 
because TF-PCA is computed using the TF representation, and reflects a 
weighting across all TF points, it obviates the need to define an explicit 
ROI in time and frequency dimensions. Instead, the effective boundaries 
of a given principal component are defined in a data-driven manner, in 
both the time and frequency dimensions, reflected in the component 
weighting matrix (Bernat et al., 2005). As previously mentioned, it is 
possible to also apply ICA to a TF representation itself (Inuso et al., 2007; 
Mika et al., 2020), which would yield similar benefits to TF-PCA in this 
domain, although (to our knowledge) applying ICA to EEG TF repre
sentations is currently used primarily for artifact removal purposes 
(Inuso et al., 2007). In situations where TF-PCA is run on data from all 
participants at once, this approach also obviates the issue of relating 
components across participants (Bernat et al., 2005). Here again, it is 
also possible to run ICA at the group level (Eichele et al., 2011), although 
this is not a commonly used approach in the EEG literature to date. 
Although, it is worth noting that further work is needed to more rigor
ously define recommendations for when it is, and is not, appropriate to 
apply TF-PCA across participant groups, as discussed further in the 
sections entitled, “Common questions and practical considerations” and 
“Developmental utility of the TF-PCA approach”. 

1.4. Scope of this article 

The goal of this tutorial article is to provide enough background 
knowledge, theory, and practical information to allow individuals with 
basic EEG experience to apply the TF-PCA approach to their own data. 
The remainder of this article provides a brief introduction to principal 
components analysis, a detailed walk-through of how to apply PCA to TF 
representations of EEG data, a discussion of practical considerations, 
and examples of using TF-PCA for developmental data. Crucially, this 
tutorial article is accompanied by a companion GitHub repository that 
contains example code, data, and a step-by-step guide of how to perform 
TF-PCA. The companion GitHub repository is located here: https://gith 
ub.com/NDCLab/tfpca-tutorial. 

Although the current tutorial is framed in terms of the utility of TF- 
PCA within developmental contexts, all theory, protocols and code 
contained in this tutorial article and companion GitHub repository can 
readily be applied more broadly across populations of interest. The 

majority of published work using the TF-PCA method has been per
formed using adult samples (Bernat et al., 2007a, 2011; Harper et al., 
2014) with only more recent applications of the method to develop
mental data collected from child or adolescent samples. Finally, it is 
important to note that, although TF-PCA is the focus of the current 
article, we do not view TF-PCA as the ideal EEG analysis approach in all 
contexts (or even in the majority of contexts). As noted in the prior 
section, entitled “Data reduction approaches for TF representations of 
EEG”, there are cases where alternative data-reduction approaches are 
better suited, or, situations in which a data reduction approach should 
be avoided altogether. In addition to the preceding section, the reader 
should also refer to later sections, entitled “Common questions and 
practical considerations”, and “Developmental utility of the TF-PCA 
approach” for examples of when and why TF-PCA may or may not be 
a useful method for one’s own data. Similarly, there may be cases where 
alternative methods for TF decomposition are preferred (e.g., Morlet vs. 
Cohen’s Class RID). Nonetheless, we argue that TF-PCA (and our asso
ciated recommendations for Cohen’s Class RID) is one of several useful 
tools available to developmental EEG researchers and we hope this 
tutorial will help facilitate wider application of the method. 

2. Introduction to TF-PCA for EEG 

2.1. Brief introduction to principal components analysis (PCA) 

While an in-depth introduction to PCA is beyond the scope of this 
article, we orient readers by beginning with a basic introduction to PCA. 
Briefly, the goal of PCA is to reduce a larger set of observed variables 
(points on the TF representation in the case of TF-PCA) into a smaller set 
of “components” that explain a majority of the variance present in the 
original set of variables (Hotelling, 1933; Jolliffe & Cadima, 2016; 
Pearson, 1901). Towards this end, PCA involves performing eigende
composition on either the correlation or covariance matrix associated 
with a set of variables. Eigendecomposition returns as many eigenvec
tors (components) as variables submitted to PCA, and the length of each 
eigenvector is equal to the number of variables in the original correla
tion/covariance matrix. Each eigenvector serves to project the data into 
a new feature space, and the eigenvalue associated with a given eigen
vector describes the magnitude within this new feature space. The 
eigenvalue for a given component can also be used to identify the 
amount of information retained (variance explained) by a given eigen
vector (component). Finally, multiplying a component’s eigenvector by 
the square root of its eigenvalue will yield a set of loadings for a given 
component. 

The purpose of PCA is data reduction, and thus, it is necessary to not 
retain all eigenvectors (components) produced by eigendecomposition. 
There are multiple approaches for determining how many eigenvectors 
(components) to retain. For example, one approach is to use an a priori 
determination of the cumulative amount of variance that should be 
explained by the retained eigenvectors (e.g., a cutoff of 60% or 80% of 
the variance explained) (Hair, 2006). Relatedly, one can employ an a 
priori rule to retain all components above a given eigenvalue; for 
example, Kaiser’s rule of retaining all components with an eigen value 
greater than one (Kaiser, 1960), or performing Horn’s parallel analysis 
(HPA; Horn, 1965) to identify the a priori eigenvalue cutoffs to use. A 
major strength of basing component selection on a priori cutoffs is that 
such approaches provide an objective decision rule to base component 
selection on. However, these approaches are not without issue, as they 
may fail to identify the most parsimonious solution in some cases, or 
result in the exclusion of crucial variance of interest. Thus, an alter
native—albeit subjective—approach involves combing multiple sources 
of information, including the evaluation of a scree plot and consider
ation of domain-specific knowledge. Briefly, a scree plot depicts eigen
values in descending order, which can facilitate selecting a cut point (or 
“elbow”) where the change in eigenvalues begins to flatten out. In 
practice, there are typically multiple elbows (potential cut points) 
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present in a given scree plot, and thus, the user must consider a number 
of factors to make a subjective determination as to which cut point to use 
(e.g., see Fig. 2). Although this alternative approach is inherently sub
jective, in practice it often leads to the most parsimonious solution that 
also retains the variance of interest. Once a given component solution 
has been selected, an analytic rotation (either orthogonal or oblique) is 
typically applied to produce a set of loadings (“weights”) in a format that 
is easier to interpret and relate back to the original data. 

It is important to note that PCA ultimately involves several choices 
on the part of the user, and thus, there is no one single method of per
forming PCA. PCA requires a choice in terms of whether to perform 
eigendecomposition on the correlation matrix or the covariance matrix, 
a choice of the number of components to extract, and finally, a choice of 
the type of analytic rotation to apply. Similarly, while there is no one 
single TF-PCA approach for EEG data, throughout this article we provide 
recommendations and/or a description of the steps and decisions that 
have most commonly been leveraged for TF-PCA of EEG data. In line 
with prior EEG work (Donchin & Heffley, 1978), TF-PCA for EEG data is 
typically performed via eigendecomposition on the covariance matrix 
(to retain the influence of amplitude, i.e. relative to the correlation 
matrix), and after selecting the appropriate component solution, an 
orthogonal rotation method (Varimax) is typically applied (to maximize 
TF separation of the resulting PCs). However, in terms of choosing the 
appropriate component solution, this depends entirely on the question 
of interest, and we devote more in depth discussion of this issue in the 
section entitled, “common questions and practical considerations”. 

2.2. Overview of the TF-PCA approach 

Having provided a relatively brief, domain-general introduction to 
PCA, we turn now to a more conceptual, and practical introduction to 
PCA in the context of TF-PCA for EEG data. As previously mentioned, 
there is no one single TF-PCA approach. However, the approach can 
broadly be described in terms of five steps (see B-F in Fig. 2). First, a TF 
representation must be computed for each channel, for each condition of 
interest (Fig. 2B). Second, each TF representation must be transformed 
from its native matrix organization into a vector by concatenating each 
row in each TF representation (corresponding to change over time for a 
single frequency bin) end-to-end (Fig. 2C). This transformation yields 
one long vector for each TF representation, and eigendecomposition is 
then applied to these vectorized TF representations. Third, an appro
priate PCA component solution must be selected and a Varimax rotation 
applied, yielding a vector of weights (loadings) for each extracted 
component (Fig. 2D). Each vector of component weights is then trans
formed back into the native matrix organization corresponding to the 
dimensions of the original TF representations. Fourth, for each extracted 
component of interest, the matrix of component weights is multiplied by 
the original TF representation (or a related TF representation) to isolate 
the TF-PCA component of interest (Fig. 2E). Fifth, the extracted TF-PCA 
components are analyzed in a manner similar to traditional TF data and 
subjected to statistical analyses (Fig. 2F). Collectively, these five steps 
describe the TF-PCA approach. In the following sections, we walk 
through each of these steps in further detail. 

2.3. Detailed walk-through of steps involved in TF-PCA 

2.3.1. Step 1: Compute TF representations 
The first step of TF-PCA is to compute TF representations from 

conventional time domain signals. An initial choice is whether to 
compute TF representations at the trial level, or at the condition- 
averaged level (i.e. the condition-averaged signals used to compute 
ERP component analyses.). This choice produces TF representations 
indexing either “average power” (phase-locked power; also sometimes 
referred to in the literatures as “evoked power”) or “total power” 
(comprised of both phase-locked and non-phase-locked power; some
times referred to as “evoked and induced power”), respectively. 

Averaged power often yields a more parsimonious component structure 
that consists of temporally discrete components when compared to total 
power. That is, TF-PCA applied to average power is more likely to pro
duce a satisfactory component solution that contains one or more 
components of interest without needing to extract a large number of 
components (see section entitled, “moving beyond average (phase- 
locked) power” for further details). In order to compute average power, 
the EEG data must first be averaged across trials (in the time domain; i. 
e., to compute ERPs). Average power is then computed, for each 
participant, for each channel, for each condition of interest, using the 
Cohen’s Class RID approach (Bernat et al., 2005). Note that while a 
traditional TF baseline correction (e.g., dB-power relative to baseline) 
can be performed prior to performing TF-PCA, to date, it has been less 
common to perform a TF baseline correction (beyond an initial sub
traction of the baseline mean in the time domain, before a TF transform 
is applied) when performing TF-PCA. This is because PCA can provide an 
alternative method of distinguishing pre- and post-event TF dynamics in 
the absence of a TF baseline correction (e.g., Buzzell et al., 2019). 
However, it is possible to perform a TF baseline correction before the 
application of TF-PCA. It is also worth noting that any established 
method for decomposing time-domain EEG data into a TF representation 
can be employed (e.g., the commonly used CWT using Morlet wavelets), 
but traditionally, Cohen’s Class RID is used to compute the TF repre
sentation of average power, given its improved resolution in both time 
and frequency across the entirety of the TF representation (Bernat et al., 
2005). 

For additional details on the distinction between different measures 
of power (e.g., average vs. total) see the paper by Buzzell and colleagues 
(2019), or a more thorough treatment of these concepts in the book by 
Cohen (2014). Note that it is possible to apply TF-PCA to TF represen
tations of total power, however, given the potential drawbacks of this 
approach, a complementary method is to first run TF-PCA on TF rep
resentations of average power and then apply the resulting PCA weights 
to TF representations of total power. Additional details and instructions 
for performing the average/total power hybrid approach are presented 
later, in the section entitled, “Moving beyond average (phase-locked) 
power”. However, before describing this average/total power hybrid 
approach, we first continue walking through the steps involved in the 
basic TF-PCA approach when working only with average (phase-locked) 
power. 

2.3.2. Step 2: Reorganize TF representations into vectors and perform 
Eigendecomposition 

Having computed TF representations of average power, each TF 
representation must now be transformed from its native matrix organi
zation into a vector; this is done by concatenating each row in a given TF 
representation (each row corresponding to a single frequency bin) end- 
to-end. Following this set of transformations, there should now be a 
vectorized TF representation for each participant, for each channel, for 
each condition. For the purposes of PCA, each vector reflects a single 
“observation” whereas the vector indices, each of which corresponds to 
a specific point in the TF representation, reflect the “variables”. Note 
that it is not necessary to transform and submit the entire TF represen
tation to PCA. Instead, the user is free to choose (based on theoretical 
and/or practical considerations) a subset of the entire TF representation 
on which to reorganize into vectors and submit to PCA; this issue is 
further discussed in the section entitled, “common questions and prac
tical considerations”. Finally, Eigendecomposition is applied to the 
covariance matrix of the TF points (variables) across all observations 
(participants x conditions x channels). Note that it is not inherently 
necessary to run TF-PCA in the manner described above, whereby the 
intersection of each participant, channel, and condition reflects a unique 
“observation” supplied to PCA. However, this approach has most 
commonly been followed in order to ensure an adequate ratio of “ob
servations” to “variables”, at least when condition-averaged (as opposed 
to trial-level) TF representations are being used (Bernat et al., 2005), 
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Fig. 2. Conceptual overview of steps involved in TF-PCA. A) For all conditions/channels of interest, for all participants, preprocessed/epoched data is required. B) TF 
representations are computed for each channel, for each condition of interest, for each participant. C) Each TF representation is transformed from its native matrix 
organization into a vector by concatenating each row in each TF representation (corresponding to change over time for a single frequency bin) end-to-end. D). The 
Vectorized TF representations are “stacked” across conditions, channels, and participants to create a matrix of data submitted to PCA. A factor solution is chosen, and 
analytic rotation applied, yielding a single vector of weights for each PC. This vector of PC weights is transformed back into the native matrix format of the original 
TF representation, yielding a PC weighting matrix. E) The same PC weighting matrix is multiplied by the original TF representations for each channel, for each 
condition of interest, for each participant, resulting in a set of PC-weighted TF representations. F) For each PC-weighted TF representation of interest, the mean of all 
TF points within a given TF representation is taken. These mean values can then be plotted topographically and statistically compared across conditions. 
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and it is therefore the method described throughout this article. How
ever, this issue is further discussed in the section entitled, “common 
questions and practical considerations”. 

2.3.3. Step 3: Component selection, rotation, and reorganization of TF 
representations 

TF-PCA does not automatically return the “best” component solution 
for the data, and the decision of how many components to extract is left 
up to the user. Moreover, it is worth noting that the process of choosing 
the appropriate PCA solution in TF-PCA is essentially the same as the 
process employed in other domains. Thus, at this step in TF-PCA, the 
user is free to employ any appropriate PCA component selection method 
that they are familiar with. However, to aid new users in component 
selection within the context of TF-PCA we provide a detailed description 
of our typical process and general recommendations for component 
selection in the section entitled, “common questions and practical con
siderations”. Once a given component solution has been selected, an 
analytic rotation is applied (typically Varimax in TF-PCA) to produce a 
vector of component loadings (weights). Finally, each vector of 
component weights is transformed back into the native matrix organi
zation corresponding to the dimensions of the original TF 
representations. 

2.3.4. Step 4: Weighting of TF representations by component weighting 
matrices 

At this point, for each component of interest, a weighting matrix 
(component loadings) has been created with the same dimensions as the 
original TF representations. Thus, in order to extract a TF-PCA compo
nent of interest, one can multiply the corresponding component matrix 
weights by the original TF representations (or related TF representa
tions). Note that although a separate TF representation for each partic
ipant, for each channel, for each condition was submitted to TF-PCA, 
only a single weighting matrix is produced for each component of in
terest. Thus, in order to isolate a given TF-PCA component of interest in 
the original data, the original TF representations for each participant, for 
each channel, for each condition, are each multiplied by the same 
component weighting matrix associated with the TF-PCA component of 
interest. Ultimately, this process converts the original TF representations 
into PC-weighted (or TF-PCA filtered) TF representations that can be 
plotted topographically and analyzed statistically. 

Although it is the PC-weighted TF representations (for each partici
pant, channel, and condition) that are the primary focus of TF-PCA, it 
can also be informative to plot and explore the component weighting 
matrices on their own. However, note that because only a single 
weighting matrix is produced for each component, it is not possible to 
plot the component weights topographically. Instead, it is only possible 
to produce topographical plots of the PC-weighted TF representations 
(across channels). 

2.3.5. Step 5: Exporting TF-PCA data for further statistical analysis 
Having created PC-weighted TF representations that isolate compo

nents of interest, it is now possible to export summary statistics for the 
purpose of conducting further (inferential) statistical analyses. Here, 
there are multiple options available to the researcher, and the appro
priate method depends on the scientific question of interest. The most 
common approach is to compute the average of the PC-weighted TF 
representation, either at a single channel (or at a single cluster of 
channels), or to compute this average across all channels. If computing 
the average for a single channel (or cluster) then the decision of how to 
select this channel can be made a priori (based on prior literature) or 
determined in a data-driven manner based on topographic plots of the 
PC-weighted data. Of course, if using a data-driven approach, then the 
researcher needs to consider the inferential statistics that will ultimately 
be performed on the data and ensure that the selection of channel(s) is 
performed on a contrast that does not bias the inferential statistics that 
will ultimately be computed. Regardless of how the channel(s) are 

selected, the average should then be computed across all TF points 
within the PC-weighted TF representation, for the selected channel(s) of 
interest, and further averaged across channels if more than one channel 
is being combined (e.g., in the case of computing a channel cluster or 
averaging across all channels). This procedure yields a single summary 
statistic (average) for each participant, for each condition of interest. 
These summary statistics can then be subjected to further statistical 
analyses to compare condition differences and/or to evaluate individual 
differences in a given TF-PCA component. 

Note that it is possible to compute additional summary statistics for 
the PC-weighted TF representations. For example one can compute 
either the peak frequency or peak latency for a given component (at a 
single channel, cluster of channels, or across all channels). However, this 
tutorial focuses on computing average values and alternative analyses of 
peak frequency/latency are not discussed further. Moreover, for all ex
amples reviewed in the section entitled, “Developmental utility of the 
TF-PCA approach”, average values were of interest and computed. 

2.4. Moving beyond average (phase-locked) power 

The previous section provided a thorough overview of the most 
commonly performed set of steps involved in the TF-PCA approach, at 
least as it applies to TF representations of average (phase-locked) power. 
In part, a majority of work with the TF-PCA approach has focused on 
average power in order to facilitate more direct comparisons and con
nections with decades of conventional ERP research characterizing more 
conventional time domain components (e.g., see Bernat et al., 2007b; 
Bowers et al., 2018b; Harper et al., 2014, 2016). However, it is worth 
noting that the broader EEG TF literature (e.g., see Cohen, 2014) more 
commonly focuses on total power, and, the set of steps described above 
can also be applied to other TF representations. TF-PCA can be applied 
directly to TF representations of total power (comprised of both 
phase-locked and non-phase locked power), as well as TF representa
tions of phase-based metrics (e.g., phase synchrony metrics computed 
within or across electrodes), among others. To this end, TF-PCA has been 
demonstrated to produce interesting and parallel results when applied to 
averaged and total power in at least some contexts (Bernat et al., 2007a; 
2007b). Yet, perhaps unsurprisingly, TF-PCA solutions derived from 
different types of TF representations can produce results differing in 
important ways. For example, when TF-PCA is applied directly to TF 
representations of total power, the resulting components tend to be less 
temporally discrete, or “smeared in time”, (compared to components 
derived from a TF representation of average power), and TF-PCA applied 
to TF representations of phase can often lack a gaussian structure. 
However, given that much less work has been published on TF-PCA 
applied directly to TF representation of total power or phase, more 
work in this domain would be beneficial. 

Given the considerations outlined above, one efficient, “hybrid” 
approach to analyzing TF representations of total power (and/or phase) 
is to identify a single set of TF-PCA components for a given data set, and 
then apply these components across different TF representations (e.g., 
average power, total power) generated from the same data set. To this 
end, the most common approach to date has been to perform TF-PCA on 
TF representations of average power, and then apply the TF-PCs to total 
power and phase representations (e.g., see Buzzell et al., 2019). Broadly, 
this hybrid approach, which differs from deriving separate TF-PCs for 
each TF representation of interest, involves three steps. First, TF repre
sentations of average power are computed and then decomposed into a 
set of TF-PCA weighting matrices for the components of interest. Second, 
within the same dataset, and using the exact same trials, channels, 
conditions, and participants, TF representations of total power (and/or 
phase) are computed. Third, the TF-PCA weighting matrices for the 
components of interest, derived from the TF representations of average 
power, are applied to the TF representations of total power (and/or 
phase) instead of generating new TF-PCs based on the TF representa
tions of total power (and/or phase). The end result of this procedure is a 
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set of PC-weighted TF representations for average power, as well as total 
power (and/or phase), which can then be plotted and analyzed statis
tically, and otherwise compared. 

When using the hybrid approach of applying TF-PCA component 
weighting matrices derived from average power to other TF represen
tations (e.g., total power), it is important to understand exactly what the 
resulting PC-weighted TF representations reflect, as well as when they 
can be useful and their relations to other derived EEG/ERP measures. In 
terms of usefulness, one benefit is that centering TF-PCA analyses 
around TF representations of average power, via the hybrid approach, 
allows for contextualizing results within decades of conventional time- 
domain average ERP work, notwithstanding additional phenomena of 
interest present in TF representations of total power (e.g., see Bernat 
et al., 2007b; Bowers et al., 2018b; Harper et al., 2014, 2016). Another 
important benefit of the hybrid approach is that it allows researchers to 
isolate temporally discrete components within a TF representation that 
is composed of both phase and non-phase locked data (and/or TF rep
resentation of phase). That is, this approach can be particularly useful in 
contexts where the researcher is interested in studying TF representa
tions of total power while also retaining a relatively high degree of 
temporal precision from the phase-locked activity. As described in the 
section entitled, “Developmental utility of the TF-PCA approach”, we 
have previously used this approach to help disentangle overlapping, but 
functionally distinct, total power dynamics (e.g., see Buzzell et al., 
2019). Researchers using these methods should also understand the 
inherent differences in data derived from the hybrid approach of 
applying TF-PCs of average power to other TF representations (e.g., to 
total power), TF-PCA analyses applied separately to TF representations of 
average and total power, and associations with more traditional ana
lyses of TF representations and related ERPs. Building on prior published 
work (e.g., see Bernat et al., 2007b; Bowers et al., 2018b; Harper et al., 
2014, 2016), the supplement includes an exploration of similarities and 
differences between the data derived using these complementary ana
lytic approaches. 

3. Common questions and practical considerations 

Having provided an introduction to the TF-PCA approach, we turn 
now to several common questions and practical considerations that re
searchers should consider when employing TF-PCA. We also provide 
some discussion of possible variations on the most commonly performed 
TF-PCA steps (described above), which may be of interest to some re
searchers. As previously noted, while TF-PCA can be a useful approach, 
it may not be the most appropriate method to employ in all cases. Thus, 
this section, and the one that follows, also provides initial recommen
dations for when (and why) TF-PCA may or may not be the most 
appropriate method to use for a given dataset. 

3.1. Do I have enough data for TF-PCA? 

As with any analysis, it is important to ensure that there is an 
adequate amount of data for performing PCA. Unfortunately, while 
there is no universal rule for determining the amount of data needed for 
PCA, the same general guidelines that have been used to determine the 
amount of data needed to perform PCA in other domains likely apply in 
the same way to TF-PCA. For example, a common heuristic is that at 
least 5 observations are required per variable, as a lower limit for 
determining the amount of data required (Gorsuch, 1983), however, 
more sparse data representations (as TF representations tend to be) may 
be able to tolerate less. Regardless of the exact set of guidelines used to 
determine the amount of data required, it is important that researchers 
are aware of exactly what constitutes a “variable” and an “observation” 
in TF-PCA. As mentioned previously, for the most common method of 
performing TF-PCA on EEG data, the number of variables is equal to the 
number of points in the TF representation submitted to eigende
composition, whereas the number of observations is determined by the 

number of participants, conditions, and channels (participants x condi
tions x channels = total number of observations). If TF-PCA is performed 
in this way, and if we assume that the number of participants, conditions 
and channels are relatively fixed for a (previously collected) dataset, 
then the important consideration for TF-PCA is ultimately the number of 
points in the TF representations submitted to PCA. Thus, to increase the 
ratio of observations (fixed number of participants x conditions x 
channels) to variables (TF points), one option is to reduce the resolution 
of the original TF representations by either reducing the number of 
sample points (via down sampling), reducing the number of frequency 
bins in the computed TF representation, or both. For example, if a re
searcher’s data is natively sampled at 500 Hz, but the researcher is only 
interested in time-frequency dynamics below ~9 Hz, then the 
researcher could down sample their data considerably (e.g. to 32 Hz) in 
order to substantially increase the ratio of observations to variables (by a 
factor of ~15) while not impacting the ability to resolve frequencies of 
interest (i.e., at 32 Hz, Nyquist frequency = 16 Hz). Alternatively, the 
researcher could choose to leave the resolution of the original TF rep
resentation unchanged, but instead select a sub-window within the full 
TF representation on which to run TF-PCA. For example, although one’s 
data might be epoched from − 1000 ms to + 1000 ms, if the researcher 
is really only interested in the period from − 500 to + 500 ms, then they 
could choose to submit only this sub-window to TF-PCA and increase the 
ratio of observations to variables (by a factor of ~2). In practice, it is 
common to use a combination of both of these approaches in order to 
increase the ratio of observations to variables when performing TF-PCA. 

It is also worth noting, that although it is most common (at least to 
date) to perform TF-PCA such that the number of “variables” is equal to 
the number of points in the TF representation, and the number of “ob
servations” reflects the number of participants, conditions, and channels 
(participants x conditions x channels = total number of observations), 
alternatives to this approach are possible (assuming the ratio of obser
vations to variables remains sufficiently high)(Bernat et al., 2005). For 
example, it is valid to perform TF-PCA for only a single channel, or 
cluster of channels. Similarly, it is also valid to leverage trial-level data 
when performing TF-PCA, such that the number of observations is re
flected in the number of participants, conditions, channels, and trials 
(participants x conditions x channels x trials = total number of obser
vations). In sum, it is valid to perform TF-PCA using one of multiple 
combinations of observations and variables, so long as the data being 
used is of sufficient quality (i.e., single trial data may be more or less 
appropriate, pending the quality of the single-trial data being used), and 
as long as there is a sufficient ratio of observations to variables. 

Above, we address general guidelines for the amount of data needed 
to perform TF-PCA, focusing on the ratio of “observations” to “variables” 
submitted to PCA. However, a related question is the number of trials 
per condition that are recommended for TF-PCA (either for condition- 
averaged or trial-level data). Here, it is important to note that, similar 
to traditional ERP or TF analyses, TF-PCA can be used to target a wide 
variety of components of interest that vary in their underlying signal-to- 
noise ratios. Thus, we do not suggest any broad recommendations spe
cific to TF-PCA. Rather, we suggest that current recommendations for 
ERP and TF literature are an appropriate starting point (e.g. Psycho
physiology guidelines for ERP and TF, respectively; (Picton et al., 2000, 
Keil et al., 2022)), as well as work relevant for the focus of activity on a 
given project (e.g. P300, or other components). Stated broadly, we 
support the view that the recommended minimum number of trials will 
depend on the specific component(s) of interest being targeted, and the 
specific context in which they are measured (similar to how the mini
mum number of trials recommended for reliable measurement of a given 
ERP component is unique to that ERP component and context of 
assessment) (Clayson & Miller, 2017b, 2017a). 

3.2. How do I determine the appropriate PCA factor solution for TF-PCA? 

The appropriate method to use when choosing the optimal 

G.A. Buzzell et al.                                                                                                                                                                                                                              



Developmental Cognitive Neuroscience 55 (2022) 101114

8

component solution entirely depends on whether prior knowledge is 
available, and whether plots and statistical comparisons can be per
formed to determine the optimal component solution without biasing 
subsequent inferential statistics for the scientific question(s) of interest. 
In the absence of prior knowledge that can be used to guide component 
selection, or in situations where use of prior knowledge would bias 
subsequent inferential statistics, we strongly recommend the use of 
purely objective approaches. For example, one could base component 
selection on a predetermined eigenvalue cutoff or the total amount of 
variance to be explained. 

When prior knowledge is available to guide component selection, it 
can be helpful to examine plots of the PC-weighed TF representations 
and related topographic plots. These plots can be computed for partic
ular conditions and/or as a difference between specific conditions. 
However, it is critical that during this stage of component selection the 
researcher is careful not to base component selection on specific con
ditions/contrasts that would bias subsequent inferential statistics for the 
study. For example, if a researcher was conducting a study to determine 
whether error and correct trials differ in theta power over mediofrontal 
cortex, then it would be appropriate to base component selection on 
plots that collapse across error and correct trials. In contrast, it would 
lead to biased inferential statistics if the researcher also considered plots 
of condition differences (error vs. correct trials) when determining the 
component solution. An alternative scenario might be that a second 
researcher is primarily interested not in error vs. correct differences per 
se, but has instead designed a study to determine whether previously 
published error vs. correct correlate with psychopathology symptoms. In 
this case, it would be appropriate for the researcher to also consider 
difference plots (error vs. correct) during component selection in order 
to identify the solution that maximizes this difference. Nonetheless, and 
regardless of the approach used by the researcher during component 
selection, it is crucial that the details and rationale for the component 
selection procedure be reported in any publication of the results. 

3.3. How to deal with saturation of the TF-PCA solution by low-frequency 
data 

A practical issue that often arises in TF-PCA is that when low- 
frequency (delta) oscillations are present in the TF representation, 
they often tend to dominate the majority of components in the TF-PCA 
solution. This occurs, at least in part, due to the 1/f scaling of TF EEG 
data (i.e. lower frequencies tend to exhibit much greater magnitudes; 
Nunez et al., 2006). This is problematic if the user is interested in 
identifying PCA components above the delta band (e.g., theta and alpha 
oscillations), when using a covariance matrix (which retains the influ
ence of amplitude). Relatedly, if researchers are interested only in a 
particular frequency band (e.g., ~4–7 Hz theta oscillations), then the 
presence of higher frequency (~8–12 Hz) alpha oscillations in the 
TF-PCA solution may also be unwanted, as it will reduce the parsimony 
of the solution to account for components that are not of theoretical 
interest. However, in these cases, there are three options available to the 
user, which we describe in relation to a study in which the researcher is 
primarily interested in measuring oscillations within the theta band 
(typically ~4–7 Hz in healthy adult populations) and leverage the same 
dataset used in the step-by-step walkthrough found in the supplement. 
The first option, is to select a component solution that contains a rela
tively large number of components to ensure that at least some of the 
components capture the frequency dynamics of interest (within the 
range of theta). However, this is typically not a practical approach, as 
more parsimonious component solutions are preferred in most cases. 
The second option, is to apply filters to the data to remove activity 
within unwanted frequency bands prior decomposing TF representa
tions and subsequent TF-PCA. For example, applying a high pass filter to 
remove delta oscillations and/or an additional low pass filter to remove 
alpha (and higher frequency) oscillations. Here, the filters applied can 
be relatively modest (e.g., a high pass filter that removes < 2 Hz 

activity), or more restrictive (e.g., a bandpass filter that isolates 4–7 Hz 
activity). Finally, the third option is to not directly filter the data prior to 
decomposing a TF representation, but instead, to restrict the window on 
which TF-PCA is run so that lower frequency (and/or higher frequency) 
data is not included in the PCA. Again, this method can apply relatively 
modest in the restrictions placed on the frequency window being sub
mitted to PCA (e.g., submitting all data within the 3–9 Hz range), or 
more restrictive (e.g., submitting only data within the 4–7 Hz range). 

In approaching this problem, it is important to keep in mind that the 
goal of TF-PCA is to leverage a data-driven method for identifying TF 
dynamics of interest, especially in situations where the exact frequency 
boundaries of interest are not known a priori. Thus, while a restrictive 
approach can be used to isolate a given frequency band of interest (e.g., 
4–7 Hz theta oscillations; see Supplemental Fig. S2B), this comes at the 
cost of imposing strong a priori constraints on the TF-PCA solution. At 
the same time, if no constraints are introduced prior to running TF-PCA, 
a less parsimonious solution must be dealt with. In practice, we have 
found that a compromise can be found by employing a combination of 
options 2 and 3, but using relatively weak constraints on the data sub
mitted to TF-PCA. For example, when targeting theta oscillations, 
instead of employing a strict 4–7 Hz cutoff for the TF window and/or a 
strict band pass filter to isolate 4–7 Hz activity, a modest high pass filter 
(e.g., 2 Hz) combined with relatively wider cutoffs for the TF window (e. 
g., 3–9 Hz) can be used to produce a parsimonious TF-PCA solution for 
theta component(s). The supplement provides an illustration of this 
approach (Fig. S2C), in contrast to more restrictive approaches on the 
one hand (Fig. S2B) or completely unbiased approaches on the other 
(Fig. S2A). 

3.4. The assumption of time-frequency stationarity 

It is important to note that one of the underlying assumptions of TF- 
PCA is that of TF stationarity (Bernat et al., 2005). Specifically, TF-PCA 
assumes that while the magnitude of individual components may vary 
across observations, the overall “structure” of the TF representation 
remains largely similar. In practice, TF-PCA is robust to moderate 
variation in the timing or frequency response of individual components 
across observations, although such variation will lead to more dispersed 
components either in the time or frequency dimensions, respectively. 
However, more substantial variation in individual components, across 
observations, will typically produce suboptimal TF-PCA solutions. That 
is, if the goal of TF-PCA is to define one or more components, and then to 
compare the magnitude of those components across conditions (i.e., 
experimental conditions, assessment timepoints, sample groups, etc.) 
then it is problematic if the TF representations (and associated TF-PCA 
components) fundamentally differ. The difficulty here arises from un
certainty over whether any apparent differences in the magnitude of 
PCA-weighted data across conditions are the result of true changes in 
magnitude alone, as opposed to a combination of changes in magnitude 
and/or changes in the underlying component structure across conditions 
(i.e., a lack of structural invariance). To this end, if there is reason to 
believe that there may be substantial differences in the TF representa
tions (and in turn, component structures) across conditions of interest, 
then it is prudent to also test for structural invariance in the underlying 
component structure across conditions, in order to facilitate proper 
interpretation of any condition differences. At the same time, re
searchers may also be interested in testing the degree of structural 
invariance across conditions as the hypothesis of interest in itself. In 
both cases, a formal statistical test of how similar component structures 
are across conditions (structural invariance) would be particularly use
ful. For a treatment of these concepts within the context of longitudinal 
change, see: Malone et al. (2021). 

Prior literature providing explicit recommendations for how to 
formally test for structural invariance (a specific subset of the broader 
topic of measurement invariance), in the context of EEG TF-PCA, is 
limited. While the development and validation of a formal testing 
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procedure for structural invariance in the context of EEG TF-PCA is 
beyond the scope of this introductory tutorial, here, we draw on prior 
measurement invariance literature in other domains (Fischer & Karl, 
2019) and suggest that an orthogonal Procrustes rotation (McCrae et al., 
1996; Schönemann, 1966) followed by calculating Tucker’s Φ (Fischer 
& Karl, 2019; Lorenzo-Seva & ten Berge, 2006; ten Berge, 1986) can be 
used as a formal test of structural invariance in TF-PCA applied to EEG 
data. For a similar emerging approach, see: Malone et al. (2021). While 
further testing and validation in this domain are needed, we tentatively 
suggest that the following procedure can be followed to test for struc
tural invariance across conditions. First, one of the two conditions (i.e., 
experimental conditions, assessment timepoints, sample groups, etc.) 
that is to be compared must be chosen as the “reference group”. Second, 
TF-PCA is applied to the reference group, and standard procedures are 
followed for identifying the optimal component solution and extracting 
the weighting matrix (component loadings) following Varimax rotation. 
Third, the same number of components are extracted from the second 
condition (and a Varimax rotation applied). Fourth, an orthogonal 
Procrustes rotation is applied in order to rotate the weighting matrix 
from the second condition towards the weighting matrix of the reference 
group. Fifth, Tucker’s Φ is computed in order to provide a metric of 
structural invariance across the two conditions. Tucker’s Φ ranges from 
0 to 1, with prior work in other domains suggesting that Φ > 0.95 re
flects equivalent component structure across the two conditions (struc
tural invariance),.95 > Φ > 0.85 reflects a moderate level of structural 
invariance, and Φ < 0.85 reflects a lack of structural invariance (Fischer 
& Karl, 2019; Lorenzo-Seva & ten Berge, 2006; ten Berge, 1986). Further 
work is needed to fully validate the use of Procrustes rotation and 
Tucker’s Φ in the context of EEG TF-PCA, to include possible revisions to 
the recommended cutoff values for Tucker’s Φ. Nonetheless, given that 
the use of Procrustes rotation and Tucker’s Φ has been established in 
other domains (Fischer & Karl, 2019), and the current lack of a com
parable structural invariance test for EEG TF-PCA (but see Malone et al., 
2021), we currently suggest the procedure outlined above as a means to 
formally test for structural invariance in the context of EEG TF-PCA. 

4. Developmental utility of the TF-PCA approach 

Having introduced the TF-PCA technique and practical consider
ations for its use, we turn now to several concrete examples of the utility 
of this approach within a developmental context. In particular, we draw 
on previously published work from our group investigating theta dy
namics related to cognitive control in children and adolescents. 

4.1. Detecting cross-sectional differences missed by other approaches 

One example of leveraging TF-PCA within a developmental context is 
provided by the cross-sectional study investigating feedback processing 
by Bowers et al. (2018a). Briefly, prior work reported mixed findings in 
terms of whether feedback processing differs across childhood and 
adolescence when studied using the feedback-related negativity (FRN) 
ERP component (Miltner et al., 1997; note that the FRN can also be 
inversely quantified as the Reward Positivity, RewP; (Holroyd et al., 
2008; Proudfit, 2015)). In the study by Bowers et al. (2018a), we were 
able to identify the presence of a significant FRN ERP, but in line with at 
least some prior work (Larson et al., 2011; Lukie et al., 2014), we did not 
identify significant changes in this component across age. However, 
when employing TF-PCA to analyze the same dataset, robust age-related 
changes in both theta and delta TF-PCA components were revealed. 
Moreover, these theta and delta components shared a similar timing and 
topography with the FRN/RewP, and subsequent regression analyses 
demonstrated how these components related to the FRN/RewP. Finally, 
we were also able to demonstrate further age-related changes in a 
TF-PCA component reflecting synchrony within the theta band, consis
tent with other emerging work in this domain (Crowley et al., 2014). 
Collectively, this study provides an example of how TF-PCA can be 

leveraged to provide sensitive indices of neurocognitive changes across 
age that might be missed by more traditional EEG analysis techniques. 

4.2. A data driven method for isolating effects of interest 

TF-PCA can be useful not only to identify neurocognitive dynamics 
missed by other approaches, but can also be used to optimize the anal
ysis of known TF effects in situations where the exact timing or fre
quency boundaries are uncertain. For example, it is fairly well 
established, at least in adults, that responses on error trials (relative to 
correct responses) are associated with an increase in theta power over 
mediofrontal cortex (Cavanagh et al., 2009; Cavanagh & Frank, 2014). 
Given that this effect is fairly well characterized in adults, both in terms 
of its timing and approximate frequency boundaries, it is possible to 
define a TF ROI when studying such error-related effects in healthy adult 
populations. However, if a developmental researcher is interested in 
studying similar error-related effects within a given developmental 
window, it might be problematic to approach this problem using a TF 
ROI, given that a lack of established studies in developmental samples 
makes it unclear whether this effect would manifest at a similar point in 
the TF representation. The study by Kim et al. (2020) provides an 
example of how TF-PCA can be useful in such contexts. In this study, we 
were interested in studying error-related theta dynamics in a sample of 
young children with autism. We were able to draw on prior adult work 
suggesting that: (1) errors would likely be associated with an increase in 
theta power, and (2) such error-related theta dynamics would most 
likely arise over mediofrontal scalp locations. However, given a lack of 
prior studies investigating error-related theta in similar clinical/demo
graphic samples, we did not have strong a priori knowledge regarding 
the exact timing or frequency boundaries for such an effect. Thus, we 
used the TF-PCA approach, loosely guided by prior (adult) knowledge of 
approximate timing, frequency band, and topography, to identify an 
error-related mediofrontal theta TF-PCA component in this sample. 
Having isolated our effect of interest, we were then able to perform 
inferential, statistics testing how this effect related to other factors in the 
sample (e.g., behavior and academic abilities). Crucially, the timing of 
the error-related theta component identified was at least 100 ms later 
than what one might have predicted (see Fig. 3), based on prior adult 
work, and therefore, we might have missed this robust effect if we were 
to have employed a more traditional, ROI-based analysis of the TF 
representation. Collectively, this study provides an example of how 
TF-PCA can be used to isolate a given effect of interest in situations 
where there may be some prior knowledge to guide analyses (e.g., based 
on prior work in adults or a distinct developmental window), but the 
exact timing, frequency boundaries, or topography remain uncertain for 
the specific sample of interest. Crucially, such situations are quite 
common in developmental cognitive neuroscience research, and there
fore, we believe that this reflects a prime example of the utility of 
TF-PCA for developmental research in particular. 

4.3. Disentangling overlapping neurocognitive dynamics 

In addition to facilitating the isolation of a single effect of interest 
within a given TF representation, a major strength of the TF-PCA 
approach is that it also provides a framework for isolating and dis
tinguishing overlapping effects of interest within a given TF represen
tation. For example, the study by Buzzell et al. (2019) provides an 
example of how TF-PCA can be used to disentangle overlapping, yet 
functionally distinct, TF dynamics. That is, while error responses and 
conflicting stimuli are both known to elicit mediofrontal theta oscilla
tions (Cavanagh & Frank, 2014), these neurocognitive processes have 
traditionally been studied in isolation from one another. Nearly all prior 
research investigating conflict-related theta has been performed on 
stimulus-locked TF representations alone, and error-related theta almost 
always studied in separate, response-locked TF representations. The 
problem with this approach is that it does not account for the potential 
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for conflict-related theta to confound error-related theta, or vice-versa. 
Nonetheless, at least in principle, it should be possible to extract con
flict- and error-related theta dynamics from the same TF representation 
and to demonstrate that they are functionally distinct (differentially 
relating to trial types and behavior). In the study by Buzzell et al. (2019), 
we showed how the TF-PCA approach can be used to disentangle distinct 
components reflecting pre-response theta (which is more sensitive to 
stimulus conflict) and post-response theta (which more sensitive to error 
commission) within the same TF representation (see Fig. 4). Specifically, 
in this paper we employed the method of applying TF-PCA weights be
tween average and total power to isolate a pre-response total power 
component and a post-response total power component. Moreover, we 
extended this hybrid method of applying TF-PCA weights to additionally 
extract pre- and post-response measures of phase synchrony across 
frontal electrodes. Crucially, we were able to functionally distinguish 

pre- and post-response theta, in terms of their relations to stimulus 
conflict, current trial accuracy, and next trial behavioral performance. 
Collectively, this study illustrates how TF-PCA can provide a useful 
framework for disentangling specific subprocesses present in a single TF 
representation. 

4.4. Studying longitudinal change 

As previously discussed, TF-PCA relies on the assumption of at least 
moderate TF stationarity, and, if this assumption is not violated, then the 
TF-PCA method can be used to assess developmental changes in the 
magnitude of a given component of interest. For example, the study by 
Buzzell et al. (2020) provides an illustration of one way in which TF-PCA 
can be used to study longitudinal change in a given TF component. In 
this study, we were interested in testing whether the magnitude of 
error-related mediofrontal theta changes across early- to 
mid-adolescence. Thus, we first conducted TF-PCA on the later adoles
cent time point alone, in order to extract a TF-PCA weighting matrix 
capturing error-related mediofrontal theta. We then applied the same 
weighting matrix to the original TF representations for both timepoints 
in order to extract the same error-related mediofrontal theta component 
at each timepoint. From here, we were able to statistically test for the 
presence of longitudinal change in this error-related mediofrontal theta 
component, finding significant changes over time. Moreover, such 
developmental changes in the mediofrontal theta component were also 
predictive of longitudinal changes in psychopathology symptoms across 
the same developmental window. 

It is important to note that the method employed in the study by 
Buzzell et al. (2020), reflects only one approach to using TF-PCA to 
assess longitudinal change, and moreover, there is an inherent limitation 
in the approach used. Specifically, the study by Buzzell et al. (2020) 
employed the method of copying PCA weights from one age to another 
in order to extract components of interest, and did not explicitly test for 
structural invariance across ages. As a result, it is difficult to draw 
conclusions as to whether age-related changes in the PC-weighted data 
reflect changes in magnitude per se, as opposed to changes in component 
structure (or a combination of both). Depending on the hypothesis of 
interest, specificity at the level of changes in magnitude vs changes in 
component structure may be more or less important. For example, the 
study by Buzzell et al. (2020) definitively shows that developmental 
change (across early-to-mid adolescence) in an error-related medi
ofrontal theta component (which is present by mid-adolescence) is 
predictive of the psychopathology. This represents a developmental and 
clinically meaningful conclusion that can be drawn from the analyses 
performed. Yet, at the same time, without first testing for measurement 
invariance across ages, it is not possible to more precisely infer whether 
the observed changes reflect changes in component magnitude/s
tructure. Thus, we recommend that future work explicitly perform tests 
of measurement invariance whenever possible, in order to allow more 
precise conclusions to be drawn from TF-PCA applied to EEG data. For 
further details, please refer to the section entitled, “Common questions 
and practical considerations”. 

5. Tutorial walk-through using example code and data 

Part five of this article consists of a detailed, step-by-step walk- 
through of how to apply TF-PCA to a publicly available data set. This 
walk-through, and all required data, code, and examples of the output 
generated, can be found in the supplement, as well as within the com
panion (open source) GitHub repository: https://github.com/NDCLab/t 
fpca-tutorial. Whether your goal is to only gain a more intuitive un
derstanding of the TF-PCA approach, or if you wish to perform TF-PCA 
analyses on your own data, we highly encourage all readers of this 
tutorial article to also read the step-by-step walkthrough located in the 
supplement and companion GitHub repository. However, while users 
can follow these steps via the supplement, we strongly recommend that 

Fig. 3. Error vs. correct theta isolated using TF-PCA. PC-weighted TF repre
sentations of response-locked average power for (A) the error-correct differ
ence, (B) Error-nogo trials, and (C) Error-go trials. Note that the timing of the 
error-related theta component identified is > 100 ms later than similar effects 
observed in healthy adults; without employing a TF-PCA approach, this effect of 
interest might have been missed. 
Figure reprinted from Kim et al. (2020). 
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users refer to the online version of this content, and in particular, the 
‘README.md’ and ‘step-by-step Walk Through.md’ files located in the 
online GitHub repository. Moreover, given the open source nature of the 
companion GitHub repository, we encourage other researchers to 
contribute additional examples and related code to the repository. 

6. Conclusions 

The unique value of TF-PCA is that it provides a data-reduction 
approach that does not rely on strong a priori constraints regarding 
the specific timing or frequency boundaries for effects of interest. This 
strength of the TF-PCA approach makes it particularly well suited for the 
analysis of developmental TF data in which strong a priori knowledge 
regarding the time-frequency boundaries of an effect is often lacking. In 
order to facilitate more widespread use of the TF-PCA approach, 
particularly among developmental cognitive neuroscientists, the current 
tutorial was designed to provide researchers with the background 
knowledge, theory, and practical information needed to fully under
stand the TF-PCA approach. Moreover, the step-by-step tutorial located 
in the supplement and the companion GitHub repository (https:// 
github.com/NDCLab/tfpca-tutorial) provides readers with the code 
needed to run similar analyses on their own data. Despite the promise of 
TF-PCA for developmental EEG research, this method is currently 
underutilized by the field. Thus, we hope that this tutorial article and 
companion GitHub repository will make it easier for more develop
mental scientists to apply this method in future studies. Moreover, we 
encourage contributions to the companion GitHub repository to further 
extend TF-PCA tools and tutorials for the field of developmental 
cognitive neuroscience. 
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