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Abstract

Error monitoring allows individuals to monitor and adapt their behavior by detecting

errors. Error monitoring is thought to develop throughout childhood and adoles-

cence. However, most of this evidence comes from studies in late childhood and

adolescence utilizing event-related potentials (ERPs). The current study utilizes time–

frequency (TF) and connectivity analyses to provide a comprehensive examination of

age-related changes in error-monitoring processes across early childhood (N = 326;

50.9% females; 4–9 years). ERP analyses indicated the presence of the error-related

negativity (ERN) and error positivity (Pe) across all ages. Results showed no error-

specific age-related changes in the ERN and the Pe. However, TF analyses suggested

error-related frontocentral responses in delta and theta signal strength (power), delta

consistency (intertrial phase synchrony), and delta synchrony (interchannel phase syn-

chrony) between frontrocentral and frontolateral clusters—all of which increasedwith

age. Additionally, the current study examines the reliability and effect size estimates

of the ERP and TF measures. For most measures, more trials were needed to achieve

acceptable reliability than what is commonly used in the psychophysiological litera-

ture. Resources to facilitate themeasurement and reporting of reliability are provided.

Overall, findings highlight the utility of TF analyses and provide useful information for

future studies examining the development of error monitoring.
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1 INTRODUCTION

Error monitoring, a component of cognitive control, allows individuals

to monitor and adapt their behavior by detecting errors. In addition

to being crucial for goal-directed behavior, error monitoring has been

linked to a variety of developmental processes and outcomes across

development, including executive function (Grammer et al., 2018), aca-

demic performance (M. H. Kim et al., 2016; S. H. Kim et al., 2020),

and externalizing and internalizing psychopathology (Fox et al., 2020;

Hajcak et al., 2003; Pasion & Barbosa, 2019; Shackman et al., 2011).

Like other aspects of cognitive control, error monitoring is thought to

develop throughout childhood and adolescence (Buzzell et al., 2017;

Davies et al., 2004; Tamneset al., 2013).However,most of this evidence

comes from studies in late childhood and adolescence utilizing event-

related potentials (ERPs).

In the current study, we utilize a Go/No-Go task specifically

designed for young children along with time–frequency (TF) and

connectivity analyses of electroencephalography (EEG) data to pro-

vide a comprehensive examination of age-related changes in error-

monitoring processes across childhood. Moreover, the reliability of

these error-related neurocognitive measurements are unknown in

young children, potentially limiting their application as markers of
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cognitive control and early risk factors for other developmental out-

comes (e.g., psychopathology). As such, the current study also pro-

vides internal consistency reliability estimates and effect sizes of these

error-related measures at different ages in a large sample of children

across childhood (4–9 years).

1.1 ERPs: error-related negativity and error
positivity

The error-related negativity (ERN) is a frontocentral negative deflec-

tion approximately 0–100 ms after an incorrect response on a task

(Falkenstein et al., 1991; Gehring et al., 1993). EEG source modeling

and functionalmagnetic resonance imaging (fMRI) studies suggest that

the ERN is generated, at least in part, within the anterior cingulate

cortex (ACC)—a brain region that integrates threat, pain, and negative

feedback to guide future behavior (Buzzell et al., 2017; Shackman et al.,

2011). The error positivity (Pe) is a centroparietal positive deflection

approximately 200–500 ms after an error (Falkenstein et al., 2000).

Although the functional significance of the Pe is still unclear, the Pe

is thought to reflect the awareness of having made an error (Boldt &

Yeung, 2015; Nieuwenhuis et al., 2001; Overbeek et al., 2005; Stein-

hauser & Yeung, 2010).

In linewithother developmental increases in cognitive control (Luna

et al., 2004; Zelazo et al., 2013), studies examining the development

of error-related ERPs suggest that the ERN and Pe increase in mag-

nitude with age (Buzzell et al., 2017; Davies et al., 2004; Ladouceur

et al., 2007; Tamnes et al., 2013). However,most of this evidence comes

from studies in late childhood and adolescence. Emerging studies with

younger children suggest a similar trend (DuPuis et al., 2015; Torpey

et al., 2012), but evidence is more equivocal (Grammer et al., 2014; Lo

et al., 2015). Therefore,more datawith large samples of young children

are needed to better understand the development of error monitoring

across childhood.

1.2 TF analyses

Importantly, most studies examining the development of error moni-

toring using EEG have limited their analyses to ERPs. ERPs do not fully

leverage the information contained in the EEG signal, which may help

explain the inconsistent findings. ERPanalyses assume that the compo-

nent of interest is temporally synchronous across trials, only focusing

on neural activity that is time-locked to the event of interest and dis-

regarding non-phase-locked signals (Luck, 2014). In contrast, TF analy-

ses measure the amplitude and phase of neural oscillations across dif-

ferent frequencies. By differentiating between amplitude and phase

information, both phase-locked and non-phase-locked signals can be

studied in relation to an event of interest. Moreover, TF measures pro-

vide more direct information regarding the neurophysiological mecha-

nisms underlying error monitoring that is present in the EEG data. For

example, TF analyses can provide distinct measures of signal strength

(power), consistency of phase oscillations across trials (intertrial phase

synchrony; ITPS), and consistency of phase oscillations across different

electrodes across trials (interchannel phase synchrony; ICPS) (Cohen,

2014). Consequently, TF analyses of error-related processes may pro-

vide unique insight into the neurocognitive processes underlying error

monitoring and the specific neural mechanisms that change across

development.

TF analyses of error-related processes have primarily focused on

the theta frequency band (Buzzell et al., 2019; Cavanagh & Shack-

man, 2015; Narayanan et al., 2013; Steele et al., 2016). In support

for TF analyses providing a unique perspective on the development

of error monitoring, the limited TF data suggest distinct developmen-

tal changes in power and phase synchrony that cannot be observed

by only examining the ERP components (Bowers et al., 2018; DuPuis

et al., 2015). For instance, in a longitudinal sample from 5 to 7 years,

DuPuis and colleagues (2015) found different developmental trajecto-

ries of power and phase synchrony—such that power decreased with

age, whereas phase synchrony increased with age. Moreover, phase

synchrony mediated the relationship between age and ERN amplitude

(DuPuis et al., 2015). Studies examining the variability of the ERN also

suggest increases in the consistency of the signal with age (Gavin et al.,

2019).

Error-related functional connectivity measures (e.g., ICPS) have not

been reported in young children, but work in adults suggests increases

in theta ICPS connectivity between frontocentral and frontolateral

sites after errors (Cavanagh & Frank, 2014). This pattern of connec-

tivity is thought to reflect frontocentral structures (e.g., ACC) recruit-

ing lateral regions such as dorsolateral prefrontal cortex (dlPFC) or

motor regions, involved in posterror changes in attention and behavior

(Buzzell et al., 2019). In a sample of adolescents, Buzzell and colleagues

(2019) found similar patterns of error-related theta-band connectiv-

ity (ICPS) to those observed with adults. However, studies examining

developmental changes in error-related connectivity across childhood

are nonexistent.

1.3 Current study

In the current study, we utilize ERP and TF approaches in a Go/No-

Go paradigm adapted for young children to provide a comprehensive

analysis of error-related processes across childhood (4–9 years). For

ERPs,weexpected toobserve theERNand thePe in response toerrors.

Based on previous studies, we hypothesized age-related increases in

ERN and Pe magnitudes; namely, more negative ERN and more posi-

tive Pe.

Although most studies examining error-related processes have

focused on theta band frequencies, neuronal oscillations in the delta

range have also been implicated in error-related processes (Cavanagh

et al., 2009; Munneke et al., 2015). Moreover, delta power and ITPS

significantly increase with age (Bowers et al., 2018). Thus, we exam-

ined power, ITPS, and ICPS in both the delta and theta band. We

expected to observe increased frontocentral theta power and ITPS on

error, relative to correct trials. We hypothesized age-related increases

in these error-related effects in delta and theta power and ITPS. For
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connectivity, we expected to observe increased delta and theta band

ICPS between frontocentral and frontolateral regions for error, rela-

tive to correct trials. Additionally, we hypothesized that this connectiv-

ity would increase with age.

The overall goal of the current study is to provide a comprehen-

sive description of error-related measures across childhood to inform

the development of cognitive control and providemetrics that can pre-

dict other outcomes (e.g., neurodevelopment or psychopathology). The

validity of these error-related measures as individual-level predictors

of other outcomes depend on their reliability. However, the reliabil-

ity of these error-related neurocognitive measurements are unknown

in young children. Therefore, in addition to examining age-related

changes in ERPs and TF measures, we also provide estimates of relia-

bility and effect sizes at varying numbers of trials, separately at differ-

ent ages.

2 METHODS

2.1 Participants

Children (N = 566; Mage= 5.97 years; 297 females) were recruited

as part of a large study examining the impact of early environmental

exposures on children’s development between September 2018 and

March 2020. Participants were all part of the Prenatal Alcohol in SIDS

and Stillbirth Safe Passage (PASS) cohort. More details on the larger

study, including recruitment has been previously published (Dukes

et al., 2014). The data utilized in the current study were collected as

part of the Environment Influences on Child Health Outcomes (ECHO)

study PASS Cohort in South Dakota (Gillman & Blaisdell, 2018). The

EEG assessments in the current study involve a cross-sectional sample

of children at 4, 5, 7, and 9 years of age.

Of the 550 participants that agreed to complete the Go/No-Go task

with EEG: two completed the task but were removed due to techni-

cal difficulties, 55 were removed because they did not complete at

least 160 trials or had lower than 60% overall accuracy during the

task, and 167 did not have sufficient trials per condition (at least six

artifact free-trials), leaving a total of 326 (50.9% females) participants

included in the present study. The sample who provided usable EEG

data was largely White (80.7%), followed by American Indian (12.0%),

and other (7.4%). Mothers reported on average 15.0 years of educa-

tion (Range = 7–17 years) when they joined the study. Additionally,

participants had the following years of age distribution: 4 (n = 58;

Mage= 4.24; SDage= 0.15), 5 (n = 97; Mage= 5.23; SDage= 0.16), 7

(n = 119; Mage= 7.20; SDage= 0.13), and 9 (n = 52; Mage= 9.25;

SDage= 0.13). Children that contributed EEG data did not differ in sex

(p = .35) or birthweight (p = .67), but were more likely to be older

(p < .001), such that 45% of the 4-year olds, 61% of the 5-year olds,

64% of the 7-year olds, and 69% of the 9-year olds contributed data.

Moreover, childrenwho contributed dataweremore likely to beWhite

(p = .005) and have more educated mothers (p < .001) than children

who did not contribute usable EEG data.

2.2 Protocol/procedure

Prior to data collection, all primary caregivers of the participants pro-

vided informed consent and all children provided assent. As part of a

larger laboratory visit including several health (e.g., anthropometrics

and spirometry) and cognitive assessments, participants completed

a Go/No-Go task called the “Zoo Game” while EEG was measured.

Before the Zoo Game, participants completed a 3-min baseline and

a three-stimulus auditory oddball (not reported here). Participants

were seated approximately 70 cm in front of the presentation com-

puter. The task was presented in E-Prime 2.0.10 (Psychology Software

Tools, Pittsburgh, PA) and is publicly available here: https://github.com/

ChildDevLab/Tasks. At the end of the visit, families were compensated

and children were provided a small toy. The Avera Institutional Review

Board approved all study procedures.

2.3 EEG data acquisition

EEG was recorded using a 64-channel HydroCel Geodesic Sensor Net

and sampled at 500Hz via EGI software (Net Station Version 5.4; Elec-

trical Geodesics, Inc., Eugene, OR). The nets had the four face channels

(E61–E64) removed to measure other psychophysiological measures

(e.g., HR) and were not used to collect EEG. Prior to data collection,

impedance values were checked for all EEG channels and confirmed to

be below 50 kΩ.

2.4 Zoo Game (Go/No-Go task)

The Zoo Game is a computer-based Go/No-Go task developed by

Fox and colleagues (He et al., 2010; Morales et al., 2020; Troller-

Renfree et al., 2019) based on the design of Durston et al. (2002).

The task was further adapted by Grammer et al. (2014) to be used

for collecting ERPs by increasing the number of trials and changing

the task parameters (e.g., intertrial interval). Children were instructed

to help a zookeeper catch animals in a zoo that had escaped from

their cages. Additionally, children were told that the orangutan was

the zookeeper’s assistant helping to catch the animals, so they should

not catch the orangutan. At the age of 4 years, there was only one

picture of an orangutan. At the other ages, there were three differ-

ent pictures of orangutans. Children were instructed to press a but-

ton to catch all of the animals (Go trials) but to withhold responses

for the orangutan (No-Go trials). On each trial, an animal stimulus was

presented on the screen for 750 ms, followed by a blank screen for

500 ms or until the child responded; the intertrial interval was jittered

between 500 and 1000 ms—which differs from Grammer et al. (2014)

who used 200–300 ms. Children practiced the task until the experi-

menter believed they understood the task, then completed up to 320

test trials, presented in eight blocks of 40 trials each. The task con-

sisted of 75% Go trials and 25% No-Go trials. As in previous studies

involving RT-based tasks with children (Bowers et al., 2021; Morales

https://github.com/ChildDevLab/Tasks
https://github.com/ChildDevLab/Tasks


4 of 16 MORALES ET AL.

et al., 2016), all Go and No-Go data were cleaned to remove anticipa-

tory responses (RTs < 150 ms) prior to the computation of accuracy

measures. Response accuracy was calculated on both Go and No-Go

trials.

2.5 EEG processing

EEG data were processed using a standardized preprocessing and

postprocessing pipeline specifically designed for developmental data

(MADE; Debnath et al., 2020; Leach et al., 2020). In brief, EEG data

were exported toMatlab (Mathworks, Natick, MA) for offline process-

ing with EEGLAB (v13.6.5b) toolbox (Delorme & Makeig, 2004) and

in-house Matlab scripts (Matlab 2014). Continuous data were high

pass filtered at 0.3 Hz and then low pass filtered at 49 Hz. Artifact-

laden channels were identified and removed using the EEGLAB plug-

in FASTER (Nolan et al., 2010). To further remove ocular and mus-

cle artifacts, extended independent component analysis (ICA) was

performed on an identical copy of the dataset. In order to improve

ICA decomposition, this copied dataset was high pass filtered at

1 Hz and segmented into 1 s epochs. Then, noisy segments of the

data and EMG-like activity were rejected using a voltage threshold

of ±1000 µV and spectral threshold (range −100 dB to +30 dB)

within the 20−40 Hz frequency band. If a channel had an iden-

tified artifact in more than 20% of the epochs, that channel was

removed from both the ICA copied dataset and the original dataset.

ICA was then run on the copied dataset, and ICA weights were

subsequently applied back to the original dataset (Debner et al.,

2010). Artifactual components were then removed from the original

dataset by an automated process that included using the Adjusted-

ADJUST algorithm (Leach et al., 2020). Data were then epoched

into 3000 ms segments that started 1000 ms before the response

onset.

After ICA artifact removal and epoching, a two-step procedure for

identifying residual artifacts was employed. First, any epochs where

ocular channel (E1, E5, E10, and E17) voltages exceeded±150 µVwere

rejected to remove residual ocular activity not removed through ICA.

Second, for any epoch in which nonocular channel voltages exceeded

±125 µV, these channels were interpolated at the epoch level. If

greater than 10% of the channels (not considering globally rejected

channels) exceeded ±125 µV in the epoch, the epoch was rejected.

All missing channels were interpolated using a spherical spline inter-

polation and then the data were referenced to the average of all

the electrodes. The average number of interpolated channels per

epoch (including those globally rejected)was 4.80% (range 1.3–13.2%).

Finally, all trials with anticipatory responses (RTs < 150 ms) were

removed.

The average number of remaining trials included for analysis for

each of the two conditions was 161.46 for correct and 16.31 for error

trials. Based on cutoffs determined by previous studies (Pontifex et al.,

2010; Steele et al., 2016), children with less than six trials for any con-

dition were removed from further analysis (see above).

2.5.1 ERPs

ERPs for each child were averaged separately for each condition and

baseline corrected to the average voltage in the−300 to−100mspres-

timulus period, usingmean amplitudemeasures for each child and con-

dition. The time windows and electrode clusters for each ERP compo-

nent (ERN and Pe) were selected based on previous publications with

developmental populations (Brooker, 2018; Grammer et al., 2018) and

visual inspection. For the ERN, we focused on the frontrocentral elec-

trode cluster (FCz; E4, E7, and E54) 0–100 ms after the response. For

the Pe,we focused on the parietal electrode cluster (E33, E34, E36, and

E38) 200–500ms after the response.

2.5.2 TF power

TF power in each epoch of interest was computed using custom MAT-

LAB scripts (Morales & Bowers, 2021), adapted from Cohen (2014).

First, a surface Laplacian filter was applied to the epoched data tomiti-

gate volume conduction over the scalp by filtering out spatially broad

features of the data (Cohen, 2014) in order to improve both spatial

and functional specificity of brain activity (Tenke &Kayser, 2012). Each

CSD converted epochwas convolvedwithMorlet wavelets, which esti-

mated spectral power in the frequency range 1−30Hz (in 60 steps

spaced logarithmically). To optimize the TF resolution, wavelet cycles

were set at three cycles at the lowest frequency (1 Hz) increasing

to 10 cycles at the highest frequency (30 Hz). Power was computed

separately for both conditions (error and correct) for all channels.

For each condition, power was normalized using a (dB) transform (dB

power = 10 × log 10[power/baseline]), where the baseline was the

average power for that condition from −300 to −100 ms window

before the response onset (Delorme & Makeig, 2004). Finally, data

were downsampled to 50Hz to facilitate datamanipulation.

2.5.3 ITPS and ICPS

ITPS and ICPSwere computed using customMATLAB scripts (Morales

& Bowers, 2021) based on Cohen (2014). ITPS measures the con-

sistency of phase oscillations for each frequency window, at each

timepoint across trials. ICPS measures the consistency of phase

oscillations between two channels (or clusters of channels) for each

frequency window, at each timepoint across trials. ITPS and ICPS val-

ues range from0, indicating randomphase alignment at that timepoint,

to 1, representing perfect phase alignment at that time point. ITPS

was calculated by taking the phase angle difference across trials, then

averaging the phase angle differences. ICPS was calculated by taking

the phase angle difference between FCz (E4) and electrodes from two

frontolateral channel clusters (left E12 and E13; right E59, and E60),

averaging the phase angle difference between each electrode pair

across trials, then averaging the phase angle differences between each

electrode pair. A subsampling procedure was used when estimating
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ICPS and ITPS to eliminate biases associated with having different

numbers of trials per condition (Cohen, 2014). ITPS and ICPS was

calculated for five trials that were randomly selected per condition.

This subsampling procedure was performed 100 times to ensure all

the data were used, then all subsamples were averaged. ITPS and ICPS

were baseline corrected per condition based on −300 to −100 ms

before stimulus onset. This process created ITPS and ICPS surfaces

per condition with the same dimensions as the TF measures for each

electrode for each participant. Finally, data were downsampled to

50Hz to facilitate datamanipulation.

2.5.4 TF regions of interest selection

The frequencies and time windows for the regions of interest (ROIs)

were selected a priori based on previous literature on developmen-

tal populations (Buzzell et al., 2019, 2020) and confirmed with visual

inspection. Although the alpha peak increases from infancy to child-

hood, by 4 years of age most children display their alpha peak at 9 Hz

(Marshall et al., 2002; Thorpe et al., 2016). Because of this and in line

with previous studies with young children (3–6 years; e.g., Canen &

Brooker, 2017; DuPuis et al., 2015; Kikuchi et al., 2011; Orekhova

et al., 2006), we chose the theta frequency band as 4–8 Hz. Delta

was defined as the frequencies below theta (1–4 Hz). We focused

on delta and theta power and ITPS over the frontocentral electrodes

(FCz; E4, E7, and E54) and ICPS between FCz and frontolateral chan-

nel clusters (left E12 and E13; right E59, and E60). To determine the

time windows of interest unbiased for condition effects, theta and

delta power, ITPS, and ICPS were each averaged over all conditions

throughout the interval from −200 to 600 ms post stimuli. As antic-

ipated, we observed a clear delta and theta response between 0 and

300 ms for power, ITPS, and ICPS. Examining topographic maps and

TF surfaces (see online supplement) supported the selections of these

ROIs.

2.6 Analytic approach

In order to examine condition effects and if these effects significantly

changed with age, we performed a set of multilevel models (MLMs)

using the nlme package in R (Pinheiro et al., 2016; RDevelopment Core

Team, 2008). Models were performed separately for each outcome of

interest; namely, each ERP (ERN and Pe), power, ITPS, ICPS for delta

and theta frequencies. Models were examined in two steps. In the

first step, we included the effect of condition (error vs. correct) with

correct as the reference condition in order to test the main effect of

condition. In the second step, we included the main effect of age and

the interaction between condition and age (condition × age). A signif-

icant interaction would indicate that the effect of errors changes with

age. This would be equivalent to the difference score between error

and correct being significantly associated with age. The motivation

for this approach (over just showing the difference score) is that it

tests age-related changes in the error-related trials (e.g., ERN) and the

difference between error and correct trials (e.g., delta ERN), as both

measures are commonly used in the literature. Moreover, all models

controlled for the effects of gender, number of trials in each condition,

and data collection site and included the random intercept effect for

each participant.

2.7 Reliability and effect sizes

2.7.1 ERP

In order to estimate the internal consistency reliability and effect size

of each measure, we followed an approach similar to one previously

described (Leach et al., 2020; Towers & Allen, 2009). In short, this

approach utilizes the trial-by-trial ERP estimates to identify the mini-

mumnumber of trials needed to obtain a reliablemeasure and observe

a significant condition effect (e.g., ERN). For this, reliability and effect

size estimates were obtained for an increasing number of trials from

4 to 32 trials in steps of four trials. Because estimates heavily depend

on which trials are sampled, for each number of trials, n, 3000 iter-

ations of split-half correlations were calculated. For each iteration, n

trials were randomly selected from all available trials for that con-

dition for a given participant, provided there were enough trials for

the given n. For effect size estimates, Cohen’s d was computed for

each measure by contrasting error and correct trials. For reliability

estimates, the selected trials were then halved by randomly assign-

ing trials to one of the halves. The internal consistency reliability esti-

mates were measured via the Spearman–Brown split-half correlation

method.

This process generated 3000 effect size and reliability estimates

for a given n for each measure. This provided us not only with a more

robust estimate for a given trial number (n), but also an estimate of

the variability around that estimate (i.e., a measure of the resampling

distribution). Thus, we present the average and 95% confidence inter-

vals (CIs) from the resampling distribution for eachmeasure separately

for each age. Finally, in order to provide a measure of overall relia-

bility (i.e., including all available participants and trials), we estimated

the reliability using theSpearman–Brownsplit-half correlationmethod

described above (3000 subsamples), but using all of the available

trials.

2.7.2 TF power

Because thebaselinenormalizationofTFpower is nonlinear,wedidnot

use trial-by-trial estimates. We followed the split-half approach with

subsampling described above for ERPs, but the TF power estimates for

a given half with number of trials, n, were normalized using a dB trans-

form. The baseline activitywas taken as the average power of those tri-

als at each frequency band for each condition from −300 to −100 ms

prestimulus. The rest of the procedure to calculate reliability and effect
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size estimates for increasing numbers of trials and overall reliability

were the same as the one described above for ERPs.

2.7.3 ITPS and ICPS

Because ITPS and ICPS estimates are defined across trials, it is not

possible to follow the trial-by-trial approach described above. Reliabil-

ity and effect size estimates for ITPS and ICPS were also calculated in

increasing numbers of trials (4–32 in steps of four trials). For each num-

ber of trials, n, the randomly sampled trials were split in half and ITPS

and ICPS were calculated separately for each half. To ease computa-

tion time, datawere downsampled to 50Hzbefore estimating ITPS and

ICPS. The internal consistency reliability estimates were measured via

the Spearman–Brown split-half correlationmethod. This was repeated

100 times and the ITPS and ICPS reliability estimates were averaged

to try to mitigate the variability inherent in subsampling random trials

and randomly splitting those trials into two halves. For plotting, nega-

tive reliability estimates were set to zero.

Notably, when iterating across number of trials (from 4 to 32), the

number of participants included in the effect size and reliability esti-

mates decreased as the number of trials increased. Only reliability and

effect size estimates with a minimum of six participants are presented

(Leach et al., 2020).

3 RESULTS

3.1 ERPs

3.1.1 ERN

As hypothesized and shown in Figure 1, we observed a clear ERN com-

ponent, indexed by a more negative amplitude deflection between 0

and100ms in frontocentral electrodes in response toerrors, compared

to correct responses, b = −5.97, p < .001. Examining the interaction

between condition and age revealed that the response to errors, com-

pared to correct responses, did not changewith age, b= 0.03, p= .849,

but there was a significant main effect of age, b=−0.72, p< .001.

3.1.2 Pe

As expected and shown in Figure 1, we observed a Pe component,

indexed by an amplitude increase between 200 and 500 ms in pari-

etocentral electrodes in response to errors, compared to correct

responses, b = 13.41, p < .001. The interaction between condition

and age revealed that the response to errors, compared to correct

responses, did not significantly change with age, b= 0.58, p= .057, but

there was a significant main effect of age, b= 1.07, p= .004 (Figure 1).

F IGURE 1 Error-related ERPmeasures: ERN and Pe. Average waveforms across all participants for the ERN (FCz; a) and the Pe (Pz; d),
age-related changes in ERPs in the selected timewindow (b and e), and topographic plots (c and f) for each condition and condition differences
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F IGURE 2 Time–frequency dynamics of delta and theta power during error and correct trials at the FCz cluster. Plots show time–frequency
power for each condition across all participants (a and d), age-related changes in time–frequency power in the selected timewindow (b and e), and
topographic plots (c and f) for each condition

3.2 TF power

As hypothesized and shown in Figure 2, we observed delta and theta

power increases between 0 and 300 ms in frontocentral electrodes in

response to errors, compared to correct responses, b = 0.62, p < .001

for delta and b = 0.73, p < .001 for theta. There were also significant

interactions between condition and age for delta, b = 0.19, p < .001,

and theta, b = 0.13, p < .001. As shown in Figure 2, both the delta and

theta responses to errors, compared to correct responses, significantly

increased as age increased.

3.3 ITPS

We also observed delta ITPS increases between 0 and 300 ms in

frontocentral electrodes in response to errors, compared to correct

responses (b = 0.03, p < .001; Figure 3). Adding the interaction

with age revealed a significant interaction for delta ITPS (b = 0.007,

p < .001), suggesting that delta ITPS to errors, compared to correct

responses, significantly increased as age increased (Figure3).However,

for theta ITPS, we did not observe either a significant effect of condi-

tion (b = −0.005, p = .122), age (b = 0.001, p = .325), or an interaction

with age (b=−0.004, p= .057).

3.4 ICPS

As predicted and shown in Figure 4, we observed delta ICPS increases

between 0 and 300 ms between a frontocentral electrode and

frontolateral electrodes in response to errors, compared to correct

responses, b= 0.016, p< .001. The interaction with age revealed a sig-

nificant interaction predicting delta ICPS, b= 0.004, p= .015, showing

that delta ICPS to errors, compared to correct responses, significantly

increased as age increased (Figure 4). For theta ICPS, we observed a

significant effect of condition (b = 0.006, p = .032), but we did not

observe a significant effect of age (b = −0.001, p = .326) or an inter-

action with age (b= 0.002, p= .155).

3.5 Reliability and effect sizes

3.5.1 ERPs

Figure 5 shows the reliability estimates by increasing number of trials

for the two ERPs (ERN and Pe) in each condition. In Table 1, we show

the minimum number of trials needed on average and within the 95%

CI to achieve acceptable reliability for each age. In general, older ages

seemed to have better reliability and require fewer trials to achieve
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F IGURE 3 Time–frequency dynamics of delta and theta intertrial phase synchrony (ITPS) during error and correct trials at the FCz cluster.
Plots show ITPS for each condition across all participants (a and d), age-related changes in ITPS in the selected timewindow (b and e), and
topographic plots (c and f) for each condition

F IGURE 4 Time–frequency dynamics of delta and theta interchannel phase synchrony (ICPS) during error and correct trials at frontolateral
clusters. Plots show ICPS for each condition across all participants (a and d), age-related changes in ICPS in the selected timewindow (b and e), and
topographic plots for each condition (c and f)
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F IGURE 5 ERP and time–frequency power effect size and reliability estimates across increasing numbers of trials for each age. Plots show the
effect size of error versus correct for each ERP (a) and power at each frequency (c), as well as split-half reliability for each ERP (b) and power at
each frequency (d) for a given condition

acceptable reliability. Moreover, the Pe seemed to have better reliabil-

ity than the ERN. This was confirmedwhen examining the overall relia-

bility (Table 1). For effect sizes, both the ERN and the Pe showed large

effect sizes (>.8),whichdidnot showaclear pattern across trials or age.

3.5.2 TF power

Figure 5 shows the reliability estimates by increasing number of trials

for the TF power estimates and their corresponding baseline periods.

In Table 1, we show the minimum number of trials needed on average

and within the 95% CI to achieve acceptable reliability for each age. In

general, older ages seemed to have better reliability and require fewer

trials to achieve acceptable reliability. This was confirmed when exam-

ining the overall reliability (Table 1). For effect sizes, as trials increased,

older ages reached higher effect sizeswhen comparing error to correct

responses in delta and theta power. On the other hand, error versus

correct effect sizes remained relatively low at younger ages around a

small effect size, regardless of howmany trials were included.

3.5.3 ITPS

Figure 6 shows the reliability estimates by increasing number of trials

for the ITPS estimates for each condition. In Table 1, we show the min-

imum number of trials needed on average to achieve acceptable reli-

ability for each age. Note that because of the limited subsampling, the

estimates across trials varymorebetweennumbers of trials. In general,

it showed the expected pattern of increasing reliability with increas-

ing numbers of trials and older ages seemed to have better reliability

and require fewer trials to achieve acceptable reliability. For estimates

of effect size, there is no clear pattern with increasing trials. For delta

ITPS, several age groupsdisplay amedium to large effect size.However,

this was not the case for theta ITPS, which showed no clear age effect.

Finally, because of the lack of trial-level data, there are no CIs and we

do not draw any conclusions between ages and conditions.

3.5.4 ICPS

Figure 6 shows the reliability estimates by increasing number of trials

for the ICPS estimates for all conditions. In Table 1, we show the mini-

mumnumber of trials neededonaverage to achieve acceptable reliabil-

ity for each age. Note that because of the limited subsampling, the esti-

mates across trials varymore between numbers of trials. Descriptively,

it showed the expected pattern of increasing reliability with increasing

numbers of trials, but for correct trials for all ages and younger ages

for errors, acceptable reliability was not reached within 32 trials. For

estimates of effect size, there is no clear pattern with increasing trials.

For delta ICPS, older age groups displayed larger effect sizes. However,
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thiswas not the case for theta ICPS,which showedno clear age-related

effect. Finally, because of the lack of trial-level data, there are no CIs

andwe do not draw any conclusions between ages and conditions.

4 DISCUSSION

Error monitoring is an important component of cognitive control that

has been linked to a variety of developmental processes and out-

comes, including executive function (Grammer et al., 2018), academic

outcomes (M. H. Kim et al., 2016; S. H. Kim et al., 2020), and psy-

chopathology (Fox et al., 2020; Hajcak et al., 2003; Pasion & Barbosa,

2019; Shackman et al., 2011). Thus, it is important to better under-

stand the development of error monitoring as well as the psychome-

tric properties of the indices commonly used to measure it. In the cur-

rent study,weutilizedERPandTF approaches in aGo/No-Goparadigm

adapted for young children to provide a comprehensive analysis of

error-related processes across childhood (4–9 years). In addition, the

current studyexamined the reliability andeffect size estimatesof these

ERP and TFmeasures.

4.1 ERPs: ERN and Pe

Our ERP results showed that, as hypothesized, we observed error-

related effects in the time windows and topography corresponding

to the ERN and Pe components. This suggests that error-monitoring

processes, including those associated with automatic error detection

(ERN) and the awareness of having made an error (Pe; Nieuwenhuis

et al., 2001), are present in early childhood. On the other hand, con-

trary to our expectations, the ERN (compared to the CRN) and the Pe

(compared to the Pe for correct trials) did not significantly changewith

age. Importantly, we did observe the expected increases in the ERN

and the Pe, but this effect was not exclusive to error trials and was

also observed for correct trials (e.g., CRN). Several previous studies

reporting significant age-related changes in ERN did not examine the

specificity of these changes with respect to the CRN. Moreover, the

lack of age-related changes may be due to the relatively limited age

range in the current study compared to other studies or the fact that

we are examining an earlier developmental period than most studies

(Buzzell et al., 2017; Davies et al., 2004; Ladouceur et al., 2007; Tamnes

et al., 2013). Future longitudinal studies in early childhood are needed

to clarify the early development of error-related processes. However,

it is also important that future studies examine the specificity of devel-

opmental changes to error-related processes rather than action moni-

toring in general.

4.2 Time-frequency analyses: power, ITPS, and
ICPS

In addition to our time-domain analyses, we examined several TF mea-

sures to differentiate between amplitude and phase information in the

delta and theta frequencies. ForTFpower,we founderror-related fron-

tocentral responses in delta and theta. This frontocentral delta/theta

increase in response to errors is thought to reflect the activation in

the action monitoring system (putatively ACC) that functions as an

“alarm” to detect errors and increases attention to instantiate control

(Cavanagh & Frank, 2014). Moreover, we found that the strength of

the signals after errors in both the theta and delta frequencies signif-

icantly increased with age suggesting important development in the

error-monitoring system across childhood.

ITPS increased during error responses compared to correct

responses in delta. Contrary to our initial hypotheses, this was not

the case for ITPS in theta. In previous studies with adults, theta

ITPS is generally more prominent after errors compared to correct

responses (Aviyente et al., 2011; Cavanagh et al., 2009). In children and

adolescents (7–18 years), there is evidence of a theta ITPS response

after errors, compared to a preresponse baseline; however, it was not

compared to correct responses (DuPuis et al., 2015; Gavin et al., 2019).

Here, we show that young children do not show the expected error-

related theta ITPS responses when compared to correct responses.

This finding is similar to findings in a feedback task that found no

difference in children (ages 10–12) when comparing loss to win, but

condition differences seem to emerge at older ages (Crowley et al.,

2014). However, in our age range, we did not observe age-related

changes in theta ITPS, possibly due to a lack of differences between

error and correct responses. In contrast, we did observe greater phase

synchrony to error responses compared to correct responses in the

delta frequency, another frequency whose dynamics are implicated

in error processing. Indeed, visual inspection of data with adults also

show significant ITPS in delta, perhaps even more prominently than

theta, but this was not formally tested or reported in those studies

(e.g., Cavanagh et al., 2009). Additionally, this delta ITPS response to

errors, compared to correct responses, increased with age. This is in

line with what was found with feedback-related delta ITPS (Bowers

et al, 2018). These findings suggest that the development of error

processing in childhood is marked by increased delta consistency in

response to errors.

To our knowledge, this study is the first to investigate error-

related frontocentral to frontolateral ICPS in younger children. In

adults and adolescents, error-related frontocentral to frontolateral

theta ICPS response in adults and adolescents is thought to reflect

connectivity between the mediofrontal cortex (including the ACC)

with dlPFC and motor areas, involved in instantiating control (Buzzell

et al., 2019; Cavanagh et al., 2009). As expected, we observed

increases in theta ICPS, but similar to the pattern of results for

ITPS, we did not observe age-related changes in theta ICPS. In

one of the few developmental studies of stimulus-related ICPS, no

age-related changes in theta ICPS were reported across adoles-

cence (Bowers et al., 2021). On the other hand, we found a strong

delta ICPS response to errors when compared to correct responses

in young children, suggesting that delta phase synchrony between

frontocentral and frontolateral areas may play an important role in

error processing in young children. Moreover, delta ICPS to errors

exclusively increased with age, showing that delta-based synchrony
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TABLE 1 Descriptives andminimum and overall reliability for ERP and TF power, ITPS, and ICPSmeasures

Correct Error

Age N Mean Min avg Min CI Total %Data rejected Mean Min avg Min CI Total %Data rejected

ERN

4 58 5.31 24 8 .88 23.1 −1.14 – 16 .55 31.6

5 97 5.06 16 8 .93 23.1 −0.29 12 8 .66 32.7

7 119 3.81 12 8 .96 18.2 −2.74 16 8 .61 31.5

9 52 2.23 16 4 .96 10.0 −3.09 8 4 .81 25.0

Pe

4 58 −18.73 16 4 .93 23.1 −7.35 – 4 .65 31.6

5 97 −17.11 8 4 .96 23.1 −4.33 8 4 .74 32.7

7 119 −15.12 4 4 .99 18.2 −0.40 8 4 .74 31.5

9 52 −13.86 12 4 .97 10.0 0.01 12 4 .75 25.0

Delta power

4 58 −0.08 – 20 .74 23.1 0.40 28 8 .51 31.6

5 97 0.11 24 12 .88 23.1 0.33 32 8 .60 32.7

7 119 0.04 24 12 .90 18.2 0.76 12 8 .70 31.5

9 52 −0.10 28 8 .90 10.0 1.21 12 4 .71 25.0

Theta power

4 58 −0.23 – 24 .72 23.1 0.24 16 8 .55 31.6

5 97 −0.04 – 16 .84 23.1 0.53 – 12 .35 32.7

7 119 −0.07 28 16 .90 18.2 0.75 28 8 .66 31.5

9 52 −0.27 16 8 .95 10.0 0.85 8 4 .81 25.0

Delta ITPS

4 58 .015 – NA .83 23.1 .035 24 NA .39 31.6

5 97 .016 – NA .88 23.1 .032 – NA .44 32.7

7 119 .012 – NA .86 18.2 .043 20 NA .54 31.5

9 52 .007 32 NA .93 10.0 .057 12 NA .71 25.0

Theta ITPS

4 58 .021 – NA .83 23.1 .017 – NA .31 31.6

5 97 .021 – NA .82 23.1 .024 – NA .31 32.7

7 119 .027 – NA .88 18.2 .021 28 NA .51 31.5

9 52 .036 32 NA .94 10.0 .016 24 NA .57 25.0

Delta ICPS

4 58 −.002 – NA .53 23.1 −.001 – NA .46 31.6

5 97 .001 – NA .64 23.1 .017 – NA .38 32.7

7 119 −.001 – NA .81 18.2 .020 28 NA .55 31.5

9 52 −.001 – NA .71 10.0 .021 – NA .62 25.0

Theta ICPS

4 58 −.001 – NA .55 23.1 .004 – NA .19 31.6

5 97 .000 – NA .53 23.1 .001 – NA .36 32.7

7 119 .000 – NA .68 18.2 .006 32 NA .40 31.5

9 52 .006 – NA .74 10.0 .009 – NA .47 25.0

Note: Min avg = minimum number of trials needed for average reliability estimate to meet acceptable reliability (.6); Min CI = minimum number of trials

needed to capture the acceptable reliability cutoff (.6) within the 95% CI; Overall ICC = overall estimate of reliability using all the available data; NA = Not

applicable for this measure; “–“= acceptable reliability cutoff (.6) was not met within 32 trials.
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F IGURE 6 Time–frequency ITPS and ICPS effect size and reliability estimates across increasing numbers of trials for each age. Plots show the
effect size of error versus correct for each ITPS (a) and ICPS (c) at each frequency, as well as split-half reliability ITPS (b) and ICPS (d) for each
condition at a given frequency

between frontocentral and frontolateral areas develops across early

childhood.

Together, the TF analyses provide support for the involvement of

delta/theta oscillations as a neural mechanism by which the error-

monitoring systemsignals theneed for increasedcontrol andmayallow

for communication between structures in the error-monitoring system

after errors. Our study suggests that several of these purported oscil-

latory neuronal mechanisms of error monitoring are present in early

childhood, but also show development across childhood. Importantly,

we did not observe error-specific effects when examining ERPs. This

suggests that TF approaches, in addition to beingmore directly related

to the neural mechanisms, may also be more sensitive for detecting

developmental changes in error-monitoring processes.

4.3 Psychometric analyses and effect sizes

We also examined reliability and effect size estimates of the ERP and

TF measures. In order to provide valuable information for future stud-

ies planning to study error-related processes using thesemeasures, we

provide these estimates at varying numbers of trials separately at dif-

ferent ages. For instance, future studiesmayuse the reliability informa-

tion to help determine a minimum number of trials needed to obtain a

reliablemeasure or use the effect size estimateswhen planning a study

designed to capture error-related effects at a given age. In general,

ERP and TF power measures demonstrated adequate overall internal

consistency reliability. However, for most measures, more trials were

needed to achieve acceptable reliability than what is commonly used

in the psychophysiological literature and what was used in the current

study, a priori, basedonprevious recommendations (Meyer et al., 2014;

Pontifex et al., 2010; Steele et al., 2016). TF phase-based measures

demonstrated inadequate reliability, especially ICPS, suggesting that

more than 32 trials are needed to reliably capture ICPS in early child-

hood. To our knowledge, this is the first reliability estimates of ITPS and

ICPS in childhood. Given the novelty of these phase-basedmeasures in

young children, more research is needed to determine their reliability

in other samples, contexts (e.g., other tasks), and ages. Overall, reliabil-

ity estimates for ERPs and TF-based measures followed a similar pat-

tern in that they increasedwith age. This is likely because younger ages

tended to have fewer trials, smaller condition effects, possibly lower

signal-to-noise ratio, and thus lower reliability for most measures.

Future studies focused on error-related processes using ERP and

TF measures with young children should attempt to increase the num-

ber of error trials. This could be done by extending the length of

the task or by utilizing adaptive tasks that ensure a given number of

errors (e.g., Brooker, 2018). Future developmental EEGwork could also
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follow amultisession approach recently employed in other neuroimag-

ing modalities (e.g., fMRI; Ellis et al., 2020) and assess the same partic-

ipant repeatedly in a short period of time to ensure enough data are

collected in each condition of interest. Finally, one of the most impor-

tant determinants of reliability is data quality and high signal-to-noise

(Clayson, 2020); thus, studies should focus on collecting high qual-

ity data and continue efforts to develop preprocessing methods that

reduce the influence of artifacts andmaximize the data collected.

Notably, the reliability estimates provided here should only be used

to help inform future studies due to the fact that reliability estimates

are a property of the scores rather than the measure. Reliability esti-

mates are context dependent and ideally should be examined and

reported in each study. For instance, reliability recommendations for

the ERN range from two trials to over 40 trials, depending on the

sample and paradigm with Go/No-Go tasks providing higher reliabil-

ity than other tasks (Clayson, 2020). To facilitate other studies estimat-

ing the minimum number of trials needed to achieve acceptable relia-

bility, a given effect size, or the overall reliability, we have made pub-

licly available all the R-based functions used in the current study to

estimate reliability and effect sizes (https://github.com/SMoralesPhD/

SplitHalf_Reliability). Similarly,wealso encourage theuseof other tool-

boxes that perform similar reliability analyses (Clayson&Miller, 2017).

4.4 Limitations and future directions

The current study has several limitations. First, not all participants

enrolled in the study provided usable EEGdata, leading tomissing data.

Importantly, our analyses examining factors associated with missing

data indicated that missing data did not occur at random. Missing data

weremore likely to occur for younger participants and for participants

from under-represented minorities in developmental cognitive neuro-

science research (i.e., non-White participants and low levels of mater-

nal education). Future research should continue efforts to increase

diversity and representation in psychophysiological research samples

by designing paradigms and research protocols that reduce participant

burden and limit missing data. We attempted to make the task more

developmentally appropriate for the 4-year-old group by only using

one No-Go stimuli exemplar, rather than three. This change in the task

is a limitation that could make age-related comparisons more difficult

to interpret, as changes to other task parameters (e.g., durations of

stimuli and intertrial intervals, or Go/No-Go ratios) have been shown

to drive changes in behavioral performance and ERPs (Wessel, 2018;

Young et al., 2018). However, in the current study, we held constant the

task parameters that have previously been shown to have an influence

on ERPs and behavior, and only changed the number of No-Go exem-

plars. Moreover, given the differential data loss associated with age,

the current study is likely underestimating age-related effects in error-

monitoring processes. The participants from younger ages included in

the paper are likely higher in self-regulation (and error monitoring)

than the participants who were excluded because of inadequate per-

formance or not enough artifact-free trials. It is also important to note

that the children in this study completed two other EEG tasks before

completing the Go/No-Go task and the visit was embedded in a larger

protocol involving other health (e.g., anthropometry and spirometry)

and cognitive assessments. Consequently, the current study is likely

a conservative estimate of the amount of error-related data that can

be successfully collected in young children. Second, although the cur-

rent study is one of the first to examine age-related changes in error-

related processes using ERP and TF measures, we had a relatively lim-

ited age range. Moreover, it was a cross-sectional study with relatively

narrow age ranges around each age 4, 5, 7, and 9 years. Future studies

utilize designs that capture within-person changes across a wide age

range (i.e., accelerated cohort longitudinal design) are needed to better

understand the development of error monitoring. Although in the cur-

rent studywe show reliability differences betweenmeasures (e.g., ERN

vs. Pe) andbetweenages (witholder childrenhavingmore reliablemea-

sures), future studies should examine what other factors impact the

reliability of EEGmeasures in developmental populations such as data

quality, sex, behavioral performance (e.g., RTs), or othermethodological

decisions (e.g., different tasks or single electrodes vs electrode clusters;

Clayson, 2020). Determiningwhat factors impact reliabilitywill be cru-

cial to provide EEG-based measures that can adequately differentiate

between participants across development. Finally, although theta ICPS

is commonly interpreted as connectivity, caution is warranted when

referring to delta ICPS as connectivity because there are fewer stud-

ies focused on this frequency band; thus, we use the term synchrony

instead. Further research is needed to determine if delta ICPS is impli-

cated in neuronal communication across brain regions in a similar way

as theta ICPS.

5 CONCLUSIONS

The current study utilized ERP and TF approaches to provide a thor-

ough examination of error-related processes across childhood (4–

9 years). Across measures, the study provides evidence for the early

development of the error-monitoring system. Specifically, ERP analy-

ses showed no error-specific age-related changes in the ERN, but the

Pe increased at older ages. TF analyses showed age-related changes in

delta and theta signal strength (power), delta consistency (ITPS), and

delta synchrony between frontrocentral (ACC) and frontolateral areas

(dlPFC). Moreover, we provide reliability and effect size estimates of

the ERP and TF measures across age, providing information for future

studies examining thedevelopmentof errormonitoring. Finally,wealso

provide publicly available tools to facilitate and encourage each EEG

study tomeasure their reliability and effect size estimates.
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