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A B S T R A C T   

Aperiodic activity contains important and meaningful physiological information that has been shown to 
dynamically change with age. However, no longitudinal studies have examined its development during early-to- 
mid adolescence. The current study closes this gap by investigating age- and sex-related longitudinal change in 
aperiodic activity across early-to-mid adolescence (N = 186; 54.3% female). Participants completed a resting 
state task and a Flanker task while EEG was record at age 13 years and again at age 15 years. Across different 
tasks and two time points, we observed significant age-related reductions in aperiodic offset and exponent. In 
addition, we observed significant sex-related differences in the aperiodic offset and exponent over time. We did 
not find any significant correlation between aperiodic activity and behavioral measures, nor did we find any 
significant condition-dependent change in aperiodic activity during the Flanker task. However, we did observe 
significant correlations between aperiodic activity across tasks and over time, suggesting that aperiodic activity 
may demonstrate stable trait-like characteristics. Collectively, these results may suggest a developmental 
parallelism between decreases in aperiodic components alongside adolescent brain development during this 
period; changes to cortical and subcortical brain structure and organization during early adolescence may have 
been responsible for the observed sex-related effects.   

1. Introduction 

Background aperiodic activity, often described as containing “1/f 
noise”, “scale-free”, or “fractal” dynamics (Donoghue et al., 2020a, 
2020b; He et al., 2010; He, 2014) contains important and meaningful 
physiological information that has been shown to dynamically change 
with age in the human brain. Background aperiodic activity present in 
the raw power spectrum can be characterized by two parameters, an 
aperiodic offset and an exponent. The offset denotes “the uniform shift 
in power across frequencies” (Donoghue et al., 2020a), and is believed to 
reflect neuronal population spiking (Manning et al., 2009; Miller et al., 
2014). The exponent, measured as the positively signed X value in 1/fx 

formula, is related to the negative slope of the power spectrum in log-log 
space, that is, the inverse relationship between power and frequency. 
While prior work has demonstrated how aperiodic activity may change 
across age (Cellier et al., 2021; Dave et al., 2018; He et al., 2019; 
Schaworonkow and Voytek, 2021; Voytek and Knight, 2015; Voytek 

et al., 2015), prior work has not studied longitudinal change in aperiodic 
parameters during the early-to-mid adolescent period. 

Findings from recent animal (Gao et al., 2017; Zhang et al.,2011) and 
human research (Donoghue et al., 2020a; Mamiya et al.,2021; Molina 
et al., 2020; Ostlund et al., 2021; Robertson et al., 2019; Voytek et al., 
2015) in addition to computational models (Gao et al., 2017) suggest 
that changes in exponent reflect changes in the ratio between excitatory 
(E) and inhibitory (I) currents in neural populations (Donoghue et al., 
2020a; Gao et al., 2017). Specifically, reductions in exponent magnitude 
(flatter slopes) are thought to reflect increases in E:I ratios while in
creases in exponent magnitude (steeper slopes) are believed to reflect 
decreases in E:I ratios (Donoghue et al., 2020a; Gao et al., 2017). There 
is an increasing body of evidence to suggest that E:I imbalances are 
associated with neurological and psychiatric disorders such as 
attention-deficit/hyperactivity disorder (ADHD; Mamiya et al., 2021; 
Ostlund et al., 2021; Robertson et al., 2019) and schizophrenia (Molina 
et al., 2020) and Fragile X Syndrome (FXS; Wilkinson and Nelson, 2021). 
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This is particularly evident in instances in which pharmaceutical in
terventions have led to changes in E:I ratios in schizophrenia (Molina 
et al., 2020) and possibly in ADHD (Mamiya et al., 2021; Robertson 
et al., 2019). These findings suggest that aberrant changes in the E:I 
balance found in particular disorders like ADHD and schizophrenia 
show that an optimal E:I balance may be of particular importance to 
typical and atypical brain development and function. 

Prior studies have shown that changes in background aperiodic ac
tivity may reflect both task-related effects/state-like characteristics 
(Donoghue et al., 2020a; Ouyang et al., 2020; Podvalny et al., 2015) in 
addition to trait-like characteristics (Dave et al., 2018). For example, 
using intracranial recordings in six subjects with medication resistant 
epilepsy, Podvalny et al. (2015) found that there was a reduction in 
exponent magnitude during a visuomotor and object recognition task 
compared to the pre-stimulus baseline period. Ouyang et al. (2020) 
found that variability in 1/f-like activity during both eyes open and eyes 
closed conditions was predictive of cognitive processing speed as 
measured via reaction times (RTs). Donoghue et al. (2020a) showed that 
during a visual working memory task, aperiodic activity was a better 
predictor of performance than alpha activity whereas Dave et al. (2018) 
found that1/f -like activity significantly predicted N400 effects of suc
cessful lexical prediction and that whole head 1/f -like activity was 
highly correlated between tasks. The authors interpreted this finding as 
representing a “consistent and characteristic measure of the individual”. 
Ostlund et al. (2021) found that when controlling for ADHD status, 
adolescents with reduced exponent magnitudes (flatter spectral slope) 
demonstrated less RT variability and faster drift rates. In summary, these 
studies suggest that background aperiodic activity demonstrates both 
trait- and state-like characteristics. However, no prior work has tested 
whether longitudinal change in aperiodic activity predicts longitudinal 
changes in behavior. We address this question in the current study. 

Age-related changes in aperiodic offset (Cellier et al., 2021; Donog
hue et al., 2020a; He et al., 2019) and exponent (Cellier et al., 2021; 
Dave et al., 2018; He et al., 2019; Schaworonkow and Voytek, 2021; 
Voytek et al., 2015; Zhang et al., 2011) have been observed in scalp EEG, 
electrocorticographic (ECoG) and MEG recordings during different 
stages of postnatal animal (Zhang et al., 2011) and human brain 
development (Cellier et al., 2021; Dave et al., 2018; He et al., 2019; 
Voytek et al., 2015) including infants over the first year of life (Scha
woronkow and Voytek, 2021). Although, in most of these studies sample 
sizes have been relatively small and age ranges relatively large, these 
studies show that brain development is associated with significant de
creases in offset and exponent over time, indicating both a decrease in 
broadband power and a move away from cortical inhibition – a redis
tribution in the power spectrum from lower frequencies to higher fre
quencies (Table 1). 

However, little is known about how aperiodic activity changes dur
ing the adolescent period, a developmental period during which we 
know that subdivisions of the brain undergo substantial structural 
refinement, most notably protracted maturation trajectories in pre
frontal cortical regions relative to cortical and subcortical limbic and 
striatal regions associated with affect and motivated states (Blakemore, 
2012; Blakemore and Choudhury, 2006; Casey et al., 2000; Cao et al., 
2017; Dosenbach et al., 2010; Goddings et al., 2014; Mills et al., 2016; 
Paus, 2005; Segalowitz et al., 2010). Sexual dimorphism in human brain 
development is also well documented, with girls showing earlier brain 
maturation patterns when compared to boys of similar age (Blakemore, 
2012; Dennison et al., 2013; Giedd, 2004; Giedd et al., 1996; Lenroot 
et al., 2007; Neufang et al., 2008; Sowell et al., 2001). However, to the 
best of our knowledge, no longitudinal study has investigated how 
developmental trajectories in aperiodic activity may differ between 
male and female participants during early adolescence. Also, to the best 
of our knowledge pubertal status during early adolescence has been 
overlooked in this domain. Finally, most of these studies are 
cross-sectional and have not examined aperiodic activity across multiple 
tasks using longitudinal data. 

The aims of the current study are therefore to 1) investigate age- and 
sex-related changes in the aperiodic offset and exponent in a longitu
dinal sample of early adolescents from whom we acquired resting state 
and Flanker task EEG at two time points, at approximately 13 and 15 
years of age; 2) investigate whether changes in aperiodic activity are 
condition dependent; 3) investigate whether aperiodic activity is asso
ciated with Flanker RTs, Flanker RT variability and Flanker accuracy; 4) 
to examine whether aperiodic activity is correlated across tasks and over 
time. First, based upon prior age-related findings (Table 1) we hypoth
esized that adolescents would show decreases in offset and exponent 
magnitude over time. We also hypothesized that male participants 
would show greater offset and exponent magnitudes when compared to 
female participants. This hypothesis is based on prior research showing 
sexual dimorphism in human brain development (Blakemore, 2012; 
Dennison et al., 2013; Giedd, 2004; Giedd et al., 1996; Lenroot et al., 
2007; Neufang et al., 2008; Sowell et al., 2001). As an additional 
exploratory step, we also investigated whether a measure of pubertal 
development explained any interactions found between sex and age. 
Second, based on prior findings we hypothesized that we would see 
differences in aperiodic activity between tasks (Podvalny et al., 2015). 
Third, based on prior studies (Ostlund et al., 2021; Ouyang et al., 2020) 
we hypothesized that reduced exponent magnitudes would be associ
ated with shorter RTs, less RT variability and increases in accuracy. 
Finally, based on the Dave et al. (2018) study we hypothesized that 
measures of aperiodic activity would be significantly correlated between 
task and over time. 

2. Methods 

2.1. Participants 

The current study included adolescents who were recruited as part of 
a larger longitudinal study investigating individual differences in 
temperament and socio-emotional development. This study was con
ducted in the Washington DC area beginning in 2001 (Hane et al., 2008). 
Here, we focus on 186 adolescents (female = 101, Caucasian = 125, 
Multi-ethnic = 29, African American = 23, Hispanic = 5, Asian = 3, 
Other = 1) for whom we had usable EEG data collected in at least one of 
the two separate time points during resting state or during the Flanker 
task. The first EEG recordings were conducted when the participants 
were approximately thirteen years of age (N = 145, M age = 13.14, SD =
0.62, age range = 12 – 15) and the second when the participants were 
approximately 15 years of age (N = 163, M age = 15.41, SD = 0.61, age 
range = 15–17). Of the 186 participants, 106 had data points for all 
measures collected at both time point 1 and time point 2. All procedures 
were approved by the University of Maryland College Park institutional 
review board. All parents provided written informed consent and all 
participants provided assent. 

2.2. Resting state and Flanker task EEG 

All EEG recordings were conducted in a dimly lit and sound- 
attenuated room and all participants were alone in the room during 
each recording session. The experimenters monitored the experiment 
from an adjacent room. Resting state EEG data were recorded during 
alternating one-minute eyes open and one-minute eyes closed condi
tions. In total six minutes of resting state data were collected. During the 
eyes open condition participants were instructed to fixate on a small 
white cross in the center of a computer screen. Following the resting 
state recordings, each participant completed a Flanker task (Eriksen and 
Eriksen, 1974). The Flanker task always came after the resting state task. 
The Flanker task included 12 blocks each consisting of 32 trials. Each 
trial began with the presentation of a fixation cross which was then 
followed by the presentation of a central arrowhead flanked on each side 
by two additional arrowheads facing either in the same direction 
(congruent) or in the opposite direction (incongruent). Participants 
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were instructed to ignore the flanking arrowheads and to indicate the 
direction of the central arrowhead by pressing a button on an EGI 
response pad button box (Model: 4608150–50). At the end of each block, 
participants received feedback regarding their performance. If they 
performed at or below 75%, text was presented on the screen indicating 
that they need to be more accurate. If they performed at 90% or higher, 
text was presented on the screen indicating that they need to respond 
faster. If performance was between 75% and 90%, text was presented on 
the screen indicating that they were doing a good job. At all times 
participants were seated approximately 1 m from a 17′′ LCD monitor. 
The stimuli were presented using E-Prime 2.0.874 (Psychology Software 
Tools, Pittsburg, PA). 

2.3. EEG acquisition and preprocessing 

For each visit, EEG data were collected using a 128-channel Hydro
Gel Geodesic Sensor Net using EGI software (Electrical Geodesic, Inc., 
Eugene, OR). EEG preprocessing and analyses were conducted using the 
EEGLAB toolbox (Delorme and Makeig, 2004) with custom MATLAB 
scripts (The MathWorks, Natick, MA). EEG data were preprocessed 
following the procedures described in the Maryland Analysis of 

Developmental EEG (MADE) pipeline (Debnath et al., 2020, 
https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline). 
Details of the EEG processing steps are presented in Supplement 2. 

2.4. Parameterizing the power spectra 

First, a Fast Fourier Transformation (FFT) was performed on the 
epoched data sets using a Hanning taper, which resulted in a frequency 
resolution of 0.33 Hz. The power spectra for each electrode were 
calculated for each epoch and then averaged across all of the epochs. 
This resulted in a power x channel matrix for each participant from 
which we averaged across all electrodes to create a single power spec
trum for each participant in each condition. Finally, prior to parame
terizing the power spectra, group matrices were created for each 
condition (resting state eyes open and resting state eyes closed, Flanker 
all conditions (congruent and incongruent together), Flanker congruent 
and Flanker incongruent separately). These group matrices encom
passed all of the participants power spectra for session 1 and session 2 

Table 1 
Summary of existing studies that have examined age-related effects in 1/f-like activity during human brain development.  

Developmental 
Research 

Imaging Method / Experimental 
Paradigm 

Participants / age ranges Sample 
size 

Results   

Cellier et al. (2021) Scalp EEG: Resting state, eyes open Early childhood to young  
adulthood (ages 3 – 24 years) 

N = 96 Aperiodic offset and exponent 
decreased with age indicating 
decreases in broadband spectra 
power and a flattening of the slope 

Dave et al. (2018) Scalp EEG: 
Comprehension/Prediction 

2 different age groups consisting of  
young adults (ages 18 – 28) and older  
adults (ages 64 – 79) 

N = 96 1/f slopes became flatter with 
increasing age. Whole head 1/f 
slopes strongly correlated across 
tasks. The 1/f slope was a 
significant predictor of the effects 
of the N400, an ERP associated 
with language comprehension. 

Donoghue et al. 
(2020a) 

Scalp EEG: resting state 
Scalp EEG: working memory task 

2 different groups consisting of young  
adults (ages 20 – 30 years) and older adults  
(ages 60 – 70 years) 

N = 40 Older adults had lower aperiodic 
offsets and exponents (flatter 
slopes). Aperiodic activity was a 
more consistent predictor of 
behavior than was periodic alpha 
band activity. 

Donoghue et al. 
(2020b) 

Scalp EEG: resting state, eyes closed Sample included children and adults (ages 6 – 44) N = 111 The aperiodic exponent was found 
to be highly correlated with age. 
θ/β ratio mostly reflective of 
changes in the aperiodic exponent 
and not θ power or β power 
fluctuations. 

He et al. (2019) MEG resting state: eyes open Sample included children (ages 8 +/- 2.5 years)  
and adults (ages 41 +/- 17 years) 

N = 52 Aperiodic offsets reduced and 
exponents decreased (flatter 
slopes) in adults compared to 
children. Only power in the β band 
was found to increase with age. 

Pathania et al. (2021) Scalp EEG: resting state 
Cognitive assessments 

Young adults (ages 19 – 33 years) and older  
adults (ages 59 – 83 years) 

N = 44 Flatter spectral slopes in older 
compared to younger adults. 
Changes in spectral slopes 
mediated the relationships found 
between age-related differences in 
cognition. 

Schaworonkow and 
Voytek. (2021) 

Longitudinal Scalp EEG: Baseline, 
reaching and non-reaching trials 

Infants with 1 – 6 EEG recordings per infant with 1 month 
between sessions (ages from 1st recording to final recording 
38 – 208 days) 

N = 22 Aperiodic exponent was found to 
decrease with increases in age. 

Voytek et al. (2015) ECoG in preoperative patients with 
epilepsy: listening tasks 
Scalp EEG: visual working memory 
task 

Epilepsy patients (ages 15− 53 years) and young adults (ages 
20 – 30) and older adults (ages 60 – 70 years) 

N = 39 In both ECoG and EEG recordings 
aging was associated with flatter 
1/f spectral slopes. Visual cortical 
1/f slopes significantly mediated 
age-related effects found in visual 
working memory tasks. 

Note: θ = theta periodic oscillations; β = beta periodic oscillations; EEG = electroencephalography; ECoG = electrocorticographic; This is not an exhaustive list and 
includes only studies that have examined changes in 1/f-like activity at different stages of brain development 

M. McSweeney et al.                                                                                                                                                                                                                           



Developmental Cognitive Neuroscience 52 (2021) 101035

4

separately. The Fitting Oscillations and One-Over-F (FOOOF)1 algorithm 
(Donoghue et al., 2020a) – an open source Python package (https://gith 
ub.com/fooof-tools/fooof/) - was then applied to the group x power 
matrices in Python (v3.7.0) from which the aperiodic offset and expo
nent were extracted. Both the aperiodic offset and exponent were 
extracted and entered into RStudio (Version 1.2.5001) for further ana
lyses using R Version 3.6.1(R Core Team (2019). An overview of the 
FOOOF algorithm alongside a figure depicting the steps taken when 
parametrizing the power spectra is presented in Supplement 2. 

2.5. Statistical analyses 

To examine age- and sex-related change in aperiodic offset and 
exponent, linear mixed effects models (LME) were performed in RStudio 
using the nlme package (Pinheiro et al., 2007). For each analysis, 
Mahalanobis distance was used to investigate the presence of multi
variate outliers. If outliers were found (χ2 < 0.001), these were removed 
before the LME model was run. In addition, Q-Q plots, histograms 
showing the standardized residuals, and scatter plots showing fitted 
versus standardized residuals were used to assess model assumptions. 
Each of the dependent variables (aperiodic offset/exponent resting state 
data and aperiodic offset/exponent Flanker data) were entered into 
separate LME models. For each LME model subject identifier was 
entered as a random effect. Condition, sex, and age in months were 
entered as fixed effects. In addition, we controlled for the number of 
trials per condition by adding this as an additional covariate in each 
model. Successive difference contrast coding was applied to the factors 
in the model. The method used for the LMEs was Maximum Likelihood. 
For participants who had missing data (i.e. if they only had data for one 
of the two data collection time points) these participants were still 
included in the analysis. See Supplement 1 for additional exploratory 
analyses with pubertal development added to the LME models for both 
aperiodic offset and exponent. To investigate whether log transformed 
Flanker RT, Flanker RT variability measured as SDRT (standard devia
tion reaction time) and Flanker accuracy were significant predictors of 
aperiodic activity (offset and exponent) we added these as covariates in 
our LME models. For each participant, anticipation RTs (RTs shorter 
than 150 ms) were removed prior to averaging or calculating SDRT. This 
approach is similar to that taken by Ostlund et al. (2021). All RT mea
sures were based on correct responses only. We took additional steps to 
investigate non-linear relationships between aperiodic activity and 
log-transformed Flanker RT, Flanker SDRT and Flanker accuracy by 
conducting polynomial regression analyses in R with squared Flanker 
RT, squared Flanker SDRT and squared Flanker accuracy measures 
predicting aperiodic offset and exponent derived from each of the con
ditions. Finally, we conducted Pearson product-moment correlations to 
investigate the relationship between offset and exponent in each of the 
conditions and the correlation between offset and exponent across both 
time points (13 and 15 years of age). See Supplement 3 for the results of 
these analyses. 

3. Results 

3.1. Condition-, age- and sex-related change in aperiodic offset and 
exponent during resting state EEG 

For the aperiodic offset during the eyes closed versus the eyes open 
condition, the results of LME model showed that there were significant 
main effects of condition (b = − 0.35, t(358) = − 2.38, p = 0.01, CI[−
0.64, − 0.06]), sex (b = − 1.04, t(177) = − 5.37, p < 0.0001, CI[− 1.42, 
− 0.66]) and age (b = − 0.01, t(358) = − 15.21, p < 0.0001, CI[− 1.42, 
− 0.66]) showing that aperiodic offsets were significantly reduced 

during the eyes open condition compared to the eyes closed condition, 
significantly reduced in females compared to males, and significantly 
reduced with age. A significant sex*age interaction was also observed (b 
= 0.005, t (358) = 4.78, p < 0.0001, CI[0.003, 0.007]) showing that 
although male participants had higher offsets at earlier ages compared 
to females, the rate of change (reduction in aperiodic offset over time) 
was significantly greater for male participants than female participants 
(Fig. 1, A). 

For the aperiodic exponent during the eyes closed condition versus 
the eyes open condition, again the results of LME model showed that 
there were significant main effects of condition (b = − 0.33, t(358) = −

2.60, p = 0.009, CI[− 0.59, − 0.08]), sex (b = − 0.64, t(177) = − 3.93, 
p = 0.0001, CI[− 0.96, − 0.32]) and age (b = − 0.003, t(358) = − 6.30, 
p < 0.0001, CI[− 0.004, − 0.002]), showing that aperiodic exponents 
were significantly reduced during the eyes open condition compared to 
the eyes closed condition, significantly reduced in females compared to 
males, and significantly reduced with age (i.e., flattening over time). A 
significant sex*age interaction was also observed (b = 0.003, t(358) =
4.14, p < 0.0001, CI[0.001, 0.005]) showing that while male partici
pants had larger exponents at earlier ages compared to females, the rate 
of change (flattening in spectral slope over time) was significantly 
greater for male participants than female participants (Fig. 1, B). 

3.2. Condition-, age- and sex-related changes in aperiodic offset and 
exponent during Flanker EEG 

For the aperiodic offset during the Flanker congruent versus incon
gruent conditions, the results of LME model showed that there was no 
significant main effect of condition (b = − 0.03, t(383) = − 0.28, 
p = 0.77, CI[− 0.27, 0.20]) but there were significant main effects of sex 
(b = − 0.41, t(182) = − 2.64, p = 0.008, CI[− 0.72, − 0.10]) and age (b =
− 0.011, t(383) = − 23.75, p < 0.0001, CI[− 0.012, − 0.010]) showing 
that although the aperiodic offset did not differ significantly between 
conditions (congruent vs incongruent), again male participants had a 
higher offset compared to female participants and that the aperiodic 
offset decreases with increases in age. A significant sex*age interaction 
was also observed (b = 0.002, t(383) = 2.61, p = 0.009, CI[0.001, 
0.003]) again showing, similar to the resting state EEG data, that male 
participants started off with higher offsets at earlier ages compared to 
female participants but showing that the rate of change (reductions in 
aperiodic offset over time) was significantly greater for male partici
pants compared to female participants (Fig. 2, A). 

For the aperiodic exponent during the Flanker congruent versus 
incongruent conditions, the results of LME model showed that there was 
no significant main effect of condition (b = − 0.002, t(383) = − 0.02, 
p = 0.97, CI[− 0.20, 0.20]) but there were again significant main effects 
of sex (b = − 0.61, t(182) = − 4.73, p < 0.0001, CI[− 0.87, − 0.36]) and 
age (b = − 0.004, t(383) = − 10.17, p < 0.0001, CI[− 0.005, − 0.003]) 
showing that although the aperiodic exponent did not differ signifi
cantly between Flanker conditions, male participants again had a 
steeper slope compared to female participants and that the aperiodic 
exponent decreases (i.e., becomes flatter) with older age. A significant 
sex*age interaction was again observed (b = 0.003, t(383) = 5.33, 
p < 0.0001, CI[0.002, 0.005]) and again this interaction showed that 
while male participants had larger exponents at earlier ages they showed 
a more significant flattening of the slope over time compared to female 
participants (see Fig. 2, A). 

3.3. Additional exploratory analyses examining condition-, puberty - and 
sex-related changes in aperiodic offset and exponent 

The results of these analyses largely mirrored the results we found for 
age. However, when both age and pubertal status were entered into the 
same models, pubertal status was no longer a significant predictor of 
aperiodic activity whereas age remained a significant predictor (Sup
plement 1). 

1 The name of this toolbox has been recently updated to specparam (https://gi 
thub.com/fooof-tools/fooof/issues/193). 
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3.4. Aperiodic offset, exponent and behavior 

No significant main effects were found for Flanker RT, Flanker SDRT 
nor Flanker accuracy for offset or exponent for either eyes open or eyes 
closed conditions (ps > 0.05). We applied the same models to aperiodic 
activity during the Flanker task and again we failed to find any signifi
cant relationships between aperiodic activity and behavior (ps > 0.05). 
Additional polynomial regression analyses were conducted to investi
gate non-linear relationships between these measures. However, these 
analyses yielded non-significant findings (ps > 0.05). 

3.5. Correlations between offset and exponent 

The correlation analyses investigating the relationship between 
offset and exponent during tasks yielded moderate to strong significant 
correlations between aperiodic activity during resting state conditions 
and during the Flanker task for each time point i.e. when participants 
were approximately 13- and 15-years of age. Correlations remained 
significant when looking at the relationship between aperiodic compo
nents over time (Supplement 3). 

4. Discussion 

4.1. Summary of main findings 

We leveraged a longitudinal dataset to investigate changes in 
aperiodic activity during early-to-mid adolescence. As predicted, we 
observed significant age-related reductions in aperiodic offset and 
exponent between the age 13 and age 15 assessments, across all con
ditions. Furthermore, we observed significant sex-related differences in 
the aperiodic offset and exponent, with male participants starting off 
with higher offsets and larger exponent magnitudes, and over time, 
showing greater decreases in both measures when compared to their 
female counterparts. In addition, we also observed significant differ
ences in both the aperiodic offset and exponent across eyes closed and 
eyes open conditions, with reduced offsets and exponent magnitudes 
during the eyes open condition. However, contrary to our hypothesis 
that behavior (Flanker RT, Flanker SDRT and Flanker accuracy) would 
predict aperiodic activity, we did not observe any significant effects. 
Moreover, we did not find any significant non-linear relationships be
tween behavior and aperiodic activity. We did find that aperiodic ac
tivity was moderate-to-strongly correlated across conditions, at both 

Fig. 1. A) age- and sex-related change in aperiodic offset during resting state EEG B) age- and sex-related change in aperiodic exponent during resting state C) resting 
state eyes closed age group average aperiodic fits at 13 years and 15 years of age showing exponents plotted in log-log space while controlling for offset D) resting 
state eyes open age group average aperiodic fits at 13 years and 15 years of age showing exponents plotted in log-log space while controlling for offset E) resting state 
eyes closed exponent and offset values at 13 years and 15 years of age F) resting state eyes open exponent and offset values at 13 years and 15 years of age. 
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time points. We also observed significant correlations between aperiodic 
measures over time. 

4.2. Longitudinal change in aperiodic activity 

In the current longitudinal study, age-related changes in the aperi
odic offset were observed across all conditions for both male and female 
participants. Age-related decreases in offset have been previously re
ported in cross-sectional studies that compared early childhood to young 
adulthood (Cellier et al., 2021; He et al., 2019) and when comparing 
young adults to older adults (Dave et al., 2018). Our results are 
consistent with these findings, indicating broadband power reductions 
over time – decreases in the uniform shift in power across frequencies - 
appear to be stable measures of brain maturation. Increases and/or 
decreases in broadband power may represent a measure of the overall 
neuronal population firing rate (Manning et al., 2009; Miller et al., 
2014). Indeed, Whitford et al. (2007) reported that age-related changes 
in absolute EEG power in slow-range frequency bands during resting 
state EEG in 138 participants aged 10–30 years of age, showed a similar 
curvilinear decline to gray matter volume as measured using MRI. In 
addition, decreases in gray matter volume in frontal and parietal cortices 
were the greatest during adolescence. Therefore, it is possible that 
maturational changes in the aperiodic offset as measured in scalp EEG 
may well reflect underlying morphological change, with such changes in 
cortical thickness/volume occurring during early- to mid-adolescence. 
In fact, total cerebral grey matter volume appears to decline from its 
maximal level between approximately 7–12 years of age (Giedd et al., 
1999; Mills et al., 2016; Sowell et al., 2001) and continues to decrease 
post-puberty into late adolescence and young adulthood (Giedd et al., 
1999; Giedd, 2004; Gogtay et al., 2004; Lenroot et al., 2007; Paus, 
2005). 

In addition to the structural changes that occur during brain devel
opment, the balance between excitatory and inhibitory neurotransmit
ters may be of particular importance (Cohen Kadosh et al., 2015). As 
noted in the introduction, researchers have proposed that changes in 
exponent reflect changes in the ratio between excitatory and inhibitory 
currents in neural populations (Donoghue et al., 2020a; Gao et al., 2017; 

He, 2014; Voytek et al., 2015). These excitatory and inhibitory currents 
in neural populations are largely driven by the relative expression of 
excitatory (glutamate) and inhibitory γ-aminobutyric acid (GABA) 
neurotransmitter levels. It has been proposed that an increase in gluta
mate (E) to GABA (I) ratio may be critical for acquiring new cognitive 
abilities and that the levels of these neurochemical ratios are important 
for neuroplasticity during important developmental periods (Cohen 
Kadosh et al., 2015). For example, using single-voxel-proton magnetic 
resonance spectroscopy (1H-MRS), Cohen Kadosh et al. (2015) found 
that higher levels of glutamate in the inferior frontal gyrus (IFG) in 
children (ages 7–10 years), but not adults (ages 20–23 years), correlated 
positively with face processing proficiency. This suggests that increased 
excitation during late childhood, but not adulthood, may be important 
for acquiring new skills. When comparing young adults to older adults, 
Voytek et al. (2015) found that age-related changes in the spectral slope 
for older adults (flattening of the slope) was associated with cognitive 
decline as measured during a working memory task. Taken together, 
these studies suggest that age-related E:I ratios may be important for 
optimal brain functioning and plasticity. 

Here we show that longitudinal changes in aperiodic activity appears 
to be a stable measure of maturational trajectories and these findings are 
supported by previous studies that have also shown age-related changes 
in background aperiodic activity across different age groups, from the 
first year of life to older age (Cellier et al., 2021; Dave et al., 2018; He 
et al., 2019; Schaworonkow and Voytek, 2021; Voytek et al., 2015). 
Additionally, our results show that both the offset and exponent were 
moderate-to-highly correlated across conditions. Our longitudinal 
findings suggest that aperiodic measures are robust across conditions 
and may index individual patterns of changes in brain morphology and 
neuronal activation. These findings and conclusion support those sug
gested by Dave et al. (2018). 

Studies investigating normative and divergent development of 
spectral parameters in EEG have reported significant differences be
tween typical and atypical neurodevelopment (Mamiya et al., 2021; 
Ostlund et al., 2021; Robertson et al., 2019). If changes in background 
aperiodic activity over time in part reflect E:I developmental patterns, 
then these findings may point to critical neurodevelopmental periods 

Fig. 2.. A) age- and sex-related change in aperiodic offset during Flanker EEG B) age- and sex-related change in aperiodic exponent during Flanker EEG C) age group 
average aperiodic fits at 13 years and 15 years of age showing exponents plotted in log-log space while controlling for offset collapsing across Flanker tasks D) flanker 
exponent and offset values at 13 years and 15 years of age. 
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during which time these E:I ratios become unbalanced, potentially 
leading to maladaptive brain function (Mamiya et al., 2021). Where 
possible, future studies should adopt longitudinal approaches to spe
cifically investigate changes in aperiodic activity over time when 
comparing clinical and non-clinical cohorts. 

4.3. Sex-related differences in aperiodic offset and exponent 

In the current study, we observed sex-related differences in the 
aperiodic offset and exponent over time. These sex-related differences in 
the aperiodic activity may be partly explained by well-documented sex- 
specific developmental changes in the brain. For example, total cerebral 
volume appears to peak at roughly 10.5 years of age in females and 14.5 
years of age in males (Lenroot et al., 2007). Male brains are approxi
mately 7–12% larger than female brains (Giedd, 2004; Giedd et al., 
1996; Lenroot et al., 2007; Sowell et al., 2001) and this remains statis
tically significant when weight and height are taken into account. 
Region-specific sex differences in subcortical grey matter volume have 
also been reported in the right hippocampus, left amygdala, caudate, 
thalamus, and putamen (Dennison et al., 2013; Giedd et al., 1996; 
Giedd, 2004; Sowell et al., 2001). It has been suggested that 
sex-differences in the developmental trajectories of white matter, 
cortical and subcortical gray matter in the human brain during adoles
cence may reflect differential increases in and expression of gonadal 
hormones (testosterone, oestrogen, and progesterone) in males and fe
males (Blakemore, 2012). For example, greater amygdala volume dur
ing puberty has been found in males compared to females while greater 
hippocampal volume has been found in females compared to males 
(Lenroot et al., 2007; Neufang et al., 2008). In addition, maturational 
change in these brain regions has been associated with different stages of 
pubertal development in both males and females (Neufang et al., 2008). 
Taken together, these findings suggest that changes during child and 
adolescent development may result in significant sex-related changes to 
cortical and subcortical brain structure and organization. The 
sex-related effects that we observed may in part be the result of the 
aforementioned changes in underlying neurophysiology. 

However, it should be noted that when both age and puberty were 
entered into the same model, age over and above puberty remained a 
significant predictor of aperiodic activity whereas puberty did not. This 
suggests that other factors during adolescent development may be of 
more relevance to the changes in aperiodic activity that we observed. 
Future studies specifically dedicated to pubertal development may be 
better equipped to address the question of whether pubertal develop
mental stages predict aperiodic activity. For example, clinical observa
tion by trained physicians in addition to self-report measures and the 
collection of salivary assays to assess hormone levels would give a much 
better measure of pubertal development. In addition, the age range in 
the current study may not be ideal for such an investigation with age 
ranges spanning 10 – 13/15 years of age being better suited for this type 
of study. 

Nonetheless, the findings presented here show that significant sex- 
related differences in aperiodic activity is present across early-to-mid 
adolescence. If the underlying neurophysiology were indeed more 
mature in females compared to males in our early adolescent sample, we 
would expect that females would show reductions in offset and de
creases in exponent magnitude (flatter spectral slope) when compared to 
males, which is what we found. In fact, one study conducted by Lenroot 
et al. (2007) showed that male brains consistently showed more sub
stantial change during adolescence than female brains and that this rate 
of change appeared to converge as both males and females reached the 
late teens and early twenties. It may be that the male participants in the 
current study were still undergoing more substantial developmental 
change compared to female participants. However, it must be noted here 
that these hypotheses are speculative. It is not possible to definitively 
state that changes in aperiodic activity in the EEG signal are the result of 
underlying brain structure and organization or function without further 

investigation into the structural and functional brain changes that occur 
during adolescence (e.g., with the use of structural MRI or fMRI). Future 
studies should investigate whether changes in brain structure and 
function during early adolescence correlate with changes in aperiodic 
activity. 

4.4. Aperiodic measures and behavior 

Contrary to our hypothesis that we would find associations between 
aperiodic activity and behavioral measures, we failed to find any sig
nificant relationship between aperiodic activity and measures of Flanker 
RT, Flanker SDRT or Flanker accuracy. One might expect that if changes 
in aperiodic activity is associated with changes in information process
ing efficiency we would find that changes in the aperiodic signal 
translate into changes in behavior. This was not the case in the current 
study. Previous studies have uncovered putative brain-behavior corre
lates specific to the shape of EEG power spectra (Donoghue et al., 2020a; 
Ostlund et al., 2021; Ouyang et al., 2020). In particular, Ostlund et al. 
(2021) showed that a flatter spectral slope during resting state EEG was 
predictive of better performance on a dual-task “Stopping task” as 
measured by SDRT and drift diffusion parameters. Ouyang et al. (2020) 
showed that resting state “1/f” activity was associated with cognitive 
processing speed. Although we adopted a similar approach in terms of 
behavioral measures (RT, SDRT) and the use of resting state EEG as well 
as Flanker EEG, we failed to find similar associations. However, there is 
currently a limited number of studies that have shown associations be
tween aperiodic activity and behavior. Future studies should attempt to 
replicate aperiodic related brain-behavior findings using similar tasks, 
population characteristics and statistical methods as those used in prior 
work. 

4.5. Limitations 

The current study has a number of limitations. Each participant 
completed resting state EEG recordings prior to the Flanker task (i.e., the 
resting state and Flanker task EEG recordings were not counter
balanced). A further limitation relates to the representativeness of our 
sample, as participants were majority white and affluent, and therefore 
not representative of the general population. Future studies should 
attempt to recruit more diverse populations to improve the generaliz
ability of findings. A final limitation, which is common to many studies 
examining aperiodic activity, is that changes in exponent magnitude 
may lead to concomitant changes in offset. This can occur when there is 
a rotation in the power spectrum around a non-zero frequency, which 
results in the two measures being highly correlated. We have proposed 
that changes in the aperiodic offset measured via scalp EEG may reflect 
changes in underlying cortical, and likely subcortical, structures of the 
brain and that changes in aperiodic exponent may reflect changes in 
excitatory and inhibitory ratios. While these two measures may reflect 
distinct properties, it remains unclear how to best control for offset when 
looking at the exponent and vice versa. Future work should attempt to 
better disentangle offset and exponent in order to improve the validity of 
inferences drawn from each measure. 

5. Conclusions 

In this longitudinal study we demonstrate that significant age-related 
reductions in aperiodic activity are detectable using scalp EEG re
cordings in a cohort of participants spanning early-to-mid adolescence. 
We also demonstrate that these changes differed significantly for male 
and female participants. To the best of our knowledge, this is also the 
first study to report sex-related differences in aperiodic activity during 
early-to-mid adolescence in a longitudinal data set. We also show that 
aperiodic activity is highly correlated across conditions and as such may 
prove to be a robust measure of patterns of neural activation. These 
findings also highlight the importance of conducting additional studies 
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that attempt to disentangle these two aperiodic parameters that is 
ubiquitous in EEG recordings. 
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