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1 |  INTRODUCTION

Electroencephalography (EEG) provides a measure of human 
neural activity with a high degree of temporal precision and 
the ability to characterize neuronal oscillations (Cohen, 2014; 
Luck, 2014; Nunez & Srinivasan, 2006). There has been a re-
cent surge of interest in the use of EEG as a reflection of brain 
activity, particularly for research in pediatric populations. 
For example, recent work in human infants has shown how 

specific measures of EEG might be useful for characterizing 
the effects of prenatal experience, early life adversity, as well 
as identifying infants at risk for different developmental dis-
orders (Marshall, Fox, & BEIP Core Group, 2004; Orekhova 
et al., 2014). Unlike EEG data recorded from adults, how-
ever, EEG recorded from pediatric populations is particularly 
susceptible to artifact contamination and only short record-
ing sessions can be tolerated. Thus, there is concern about 
the amount of artifact-free EEG that can be acquired from 

Received: 30 October 2019 | Revised: 13 March 2020 | Accepted: 17 March 2020

DOI: 10.1111/psyp.13580  

O R I G I N A L  A R T I C L E

The Maryland analysis of developmental EEG (MADE) pipeline

Ranjan Debnath1  |   George A. Buzzell1,2 |   Santiago Morales1,2  |    
Maureen E. Bowers2 |   Stephanie C. Leach1 |   Nathan A. Fox1,2

1Department of Human Development and 
Quantitative Methodology, University of 
Maryland, College Park, MD, USA
2Neuroscience and Cognitive Science 
Program, University of Maryland, College 
Park, MD, USA

Correspondence
Ranjan Debnath, The Child Development 
Lab, Department of Human Development 
and Quantitative Methodology, University 
of Maryland, College Park, 20742 MD, 
USA.
Email: rdebnath@umd.edu

Funding information
This work was supported by the National 
Institute of Health (1UG3OD023279-01, 
P01HD064653, U01MH093349).

Abstract
Compared to adult EEG, EEG signals recorded from pediatric populations have 
shorter recording periods and contain more artifact contamination. Therefore, pedi-
atric EEG data necessitate specific preprocessing approaches in order to remove en-
vironmental noise and physiological artifacts without losing large amounts of data. 
However, there is presently a scarcity of standard automated preprocessing pipelines 
suitable for pediatric EEG. In an effort to achieve greater standardization of EEG 
preprocessing, and in particular, for the analysis of pediatric data, we developed 
the Maryland analysis of developmental EEG (MADE) pipeline as an automated 
preprocessing pipeline compatible with EEG data recorded with different hardware 
systems, different populations, levels of artifact contamination, and length of record-
ings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes 
additional customized features particularly useful for EEG data collected from pedi-
atric populations. MADE processes event-related and resting state EEG from raw 
data files through a series of preprocessing steps and outputs processed clean data 
ready to be analyzed in time, frequency, or time-frequency domain. MADE provides 
a report file at the end of the preprocessing that describes a variety of features of the 
processed data to facilitate the assessment of the quality of processed data. In this 
article, we discuss some practical issues, which are specifically relevant to pediatric 
EEG preprocessing. We also provide custom-written scripts to address these practi-
cal issues. MADE is freely available under the terms of the GNU General Public 
License at https://github.com/Child DevLa b/MADE-EEG-prepr ocess ing-pipeline.
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pediatric populations. Moreover, the traditional frequency 
bands of EEG (e.g., delta, theta, alpha, beta) are not defined 
in the same way for younger participants, compared to adults 
(Marshall, Bar-Haim, & Fox, 2002). For example, the peak 
frequency for oscillations within the alpha band changes over 
the first years of life, which may further necessitate specific 
preprocessing decisions when analyzing pediatric data.

Before analyzing EEG to calculate neural measures of in-
terest, it is necessary to perform a set of preprocessing steps 
(Luck, 2014), which serve to remove environmental noise 
and physiological artifacts. While there is a general consen-
sus as to what needs to occur during EEG preprocessing, the 
exact preprocessing steps vary amongst research labs, and 
as noted above, may differ for pediatric data. Moreover, a 
number of these preprocessing steps require subjective inputs 
and decisions by the user, which can result in further vari-
ability within and across labs. In an effort to achieve greater 
standardization of EEG preprocessing, particularly for the 
analysis of pediatric data, the Child Development Lab at the 
University of Maryland developed a preprocessing pipeline 
to exclude unwanted artifacts from data and improve the sig-
nal-to-noise ratio, while minimizing data loss. The Maryland 
analysis of developmental EEG (MADE) pipeline achieves 
complete automation of EEG preprocessing, allowing objec-
tivity and reproducibility, which is particularly well-suited 
for large-scale, multi-site projects.

While there are other publicly available EEG prepro-
cessing pipelines such as PREP (Bigdely-Shamlo, Mullen, 
Kothe, Su, & Robbins, 2015), Automagic (Pedroni, Bahreini, 
& Langer, 2019), APP (da Cruz, Chicherov, Herzog, & 
Figueiredo, 2018), these pipelines are optimized for adult 
EEG data. Although recently the HAPPE preprocessing pipe-
line (https://github.com/lcnha ppe/happe) has been optimized 
for pediatric populations, it is not suitable for preprocess-
ing data intended for event-related potential (ERP) analyses 
(Gabard-Durnam, Mendez Leal, Wilkinson, & Levin, 2018). 
The MADE pipeline was created to provide a variety of im-
provements over existing pipelines. First, MADE can process 
both resting state and event-related data from multiple differ-
ent recording systems. Second, the MADE pipeline is trans-
parent, as it is a set of MATLAB scripts that can be examined 
by the user, and is easily customizable by setting a few pa-
rameters at the beginning of the script. Third, the MADE 
pipeline utilizes advanced and automated artifact detection 
and correction procedures including a newly developed set 
of routines to modify current ICA approaches (Leach et al., 
2020). Finally, the MADE pipeline provides a variety of sup-
plemental scripts to assist with re-labeling event-related data 
and excluding interference trials from infant data.

In line with the principles of open science, we have made 
our scripts publicly available (https://github.com/Child DevLa 
b/MADE-EEG-prepr ocess ing-pipeline). This manuscript 
serves as a companion article to the set of publicly available 

scripts and achieves two purposes: 1) it provides a detailed 
description of the theory behind each of the preprocessing 
steps implemented so that novices and experts alike can un-
derstand the rationale behind each preprocessing decision, 
and 2) it shows how the pipeline performs compared to other 
preprocessing approaches. Additionally, the online supple-
ment of this manuscript provides a step-by-step description of 
how to use and customize the available scripts so that users, 
even with little-to-no knowledge of EEG data analysis, can 
utilize the MADE pipeline. Our goal is to provide a simple, 
user-friendly, and effective EEG data preprocessing pipeline 
to facilitate research with pediatric EEG data.

2 |  PIPELINE OVERVIEW

Our preprocessing pipeline is implemented as a set of 
MATLAB (The MathWorks, Natick, MA) scripts, which 
allow for complete automation of EEG preprocessing. The 
scripts that make up the pipeline draw heavily on the EEGLAB 
toolbox (Delorme & Makeig, 2004) functions and rely on the 
EEGLAB data structure as an organizing principle. We fur-
ther leverage specific functions from some EEGLAB plugins 
for importing raw data, identification of bad electrodes and 
artifactual independent components (ICs). The pipeline also 
includes additional customized features particularly useful 
for EEG data collected from pediatric populations, such as 
trial-level channel interpolation (e.g., Buzzell et al., 2019). 
Thus, the MADE pipeline reflects a novel combination of the 
current state-of-the-art in EEG processing techniques, well-
suited for pediatric data.

The steps involved in our preprocessing pipeline (Figure 1) 
include high and low-pass filtering, automated identification/
removal of bad EEG channels, independent components anal-
ysis (ICA) to identify and remove artifacts, creating epochs, 
artifact rejection on epoched data using voltage threshold, 
channel interpolation, and re-referencing of epoched data. In 
the section below we describe the theory behind our specific 
approach to each of these preprocessing steps.

2.1 | Filtering the data

Filtering EEG data can remove low-frequency drifts, skin po-
tentials, high-frequency noise, EMG artifacts, and electrical 
line noise that commonly manifest at 50 Hz or 60 Hz. We 
high-pass filter our data at 0.3 Hz and a low-pass filter at/
below the frequency of electrical line noise (50 Hz or 60 Hz), 
which is recommended for typical experiments studying 
cognitive, affective, and perceptual processes (Luck, 2014). 
We have tried several procedures to remove electrical line 
noise and found them unsatisfactory; therefore, as part of 
our standard preprocessing stream, we prefer filtering out 
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frequencies at/above electrical line noise (50 Hz or 60 Hz). 
To avoid a latency shift that can be caused by some filters, we 
use a noncausal Finite Impulse Response (FIR) filter using 
the FIRfilt plugin of EEGLAB (developed by A. Widmann: 
www.unile ipzig.de/~bioco g/conte nt/widma nn/eegla b-plugi 
ns/). Furthermore, we filter our continuous data (before cre-
ating epochs) to avoid edge artifacts in each data epoch. To 
minimize additional artifact that is created by a “steep” filter 
roll-off (see Luck, 2014), our low-pass filter is designed to 
have a 10 Hz transition band; we further apply a high-pass 
filter with a passband of 0.3 Hz and a stopband of 0.1 Hz. The 
reason for employing a passband of 0.3 Hz for the high pass 
filter, as opposed to 0.1  Hz, is because empirical research 

has shown that data recorded via high impedance systems 
(e.g., the EGI system) are susceptible to ultralow frequency 
artifacts (e.g., skin potentials) that need to be filtered out 
(Kappenman & Luck, 2010). We prefer applying the high 
and low-pass filters before identifying bad channels since fil-
ters can minimize noise and therefore, improve the detection 
of bad channels.

2.2 | Removal of bad channels

Electrodes can “go bad” during the recording of EEG data 
for a number of reasons, including displacement due to head 

F I G U R E  1  Schematic representation 
of the MADE pipeline's preprocessing 
steps. Independent component analysis is 
abbreviated to ICA. The intermediate results 
are indicated by the suffix added to the file 
name in that specific processing step in the 
gray boxes

http://www.unileipzig.de/~biocog/content/widmann/eeglab-plugins/
http://www.unileipzig.de/~biocog/content/widmann/eeglab-plugins/
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or body movements, changes in impedance, or faulty wiring. 
Pediatric data are often more susceptible to the issues of dis-
placement or impedance change given that children are less 
likely to remain still and are often less tolerant of electrode 
adjustments (e.g., moving hair or re-seating electrodes) after 
capping. Therefore, it is common to identify bad channels 
during preprocessing of EEG data, particularly for pediatric 
data.

In order to detect bad channels, we use the “channel_prop-
erties.m” function from the FASTER EEGLAB plugin (Nolan, 
Whelan, & Reilly, 2010). FASTER with the source code is 
freely available as an EEGLAB plugin (https://sourc eforge.
net/proje cts/faste r/). The “channel_properties.m” function 
identifies bad channels by first measuring three values that 
are standardized across all electrodes: Hurst exponent, cor-
relation with other channels, and channel variance. The Hurst 
exponent refers to a measure of the long-range dependence 
of time series data, with human EEG known to have a Hurst 
exponent of ~0.7; prior work has shown that deviations from 
a Hurst exponent of 0.7 can be used to detect the presence 
of a non-biological signal (Nolan et al., 2010). Therefore, if 
the Hurst exponent for a given channel is abnormal, then it 
is likely that the channel contains data that is primarily non- 
biological in nature (e.g., environmental noise). The correla-
tion measure assesses how similar a given channel’s data is 
to other nearby channels, with the assumption that nearby 
channels should not be identical but should still be similar as 
a result of volume conduction (Nolan et al., 2010). Thus, if 
a given channel’s correlation value is abnormal, the channel 
likely did not record primarily brain activity. Finally, channel 
variance measures how variable the data for a given channel 
is over time; if the channel variance is abnormal, then it is 
assumed that the channel likely did not record primarily brain 
activity. The “channel_properties.m” function measures the 
Hurst exponent, correlation, and channel variance values 
for all channels and then standardizes them by transforming 
into Z scores. We consider any channel that has an absolute 
Z score greater than 3, for any of the three measures, to be 
considered a bad channel. We delete bad channels globally 
(across the entire recording period) and these channels are 
interpolated at a later step (described in detail below). We 
recommend not to include a particular participant with more 
than 10% of the bad channels in post-processing.

2.3 | Optional removal of outer electrodes 
for infants’ data (a priori)

One of the benefits of the EGI geodesic net, which is com-
monly employed in pediatric EEG research, is that it provides 
extensive coverage of the head (Tucker, 1993). However, we 
have found that the outermost ring of electrodes that are lo-
cated near the base of the skull tend to have poor connections 

and are often noisy when recording from infants. For this rea-
son, our standard procedure for preprocessing infant data is to 
remove this outer ring of electrodes, a priori, before running 
the “channel_properties.m” function. The reason for remov-
ing these electrodes a priori, instead of relying on the “chan-
nel_properties.m” function to identify and remove them, is 
because this function operates via calculating standardized 
values. Therefore, if a large number of bad channels are pre-
sent in the data, then this will reduce the Z score values cal-
culated by the “channel_properties.m” function, potentially 
making it more likely that not all bad channels are detected. 
This problem can be mitigated if a set of known bad channels 
(i.e., the outer ring of electrodes) is first removed.

2.4 | Independent components analysis

Even after filtering and the removal of bad channels (detected 
using either the FASTER tools or a priori removal described 
above), EEG recordings still contain a number of non-neural 
artifacts, including electrical deviations caused by blinks, 
saccades, or EMG (Luck, 2014). One option for dealing with 
such artifacts is to simply identify the time segments in the 
data during which such artifacts are present and remove these 
segments completely from further analysis. This approach is 
valid and provides strong protection against misinterpreting 
physiological artifacts as neural data. However, in order to 
employ such an approach, it is necessary to either record data 
from a participant that is able to minimize blinks, saccades 
and muscle movements, or have a large amount of data so 
that even after throwing out such segments there is still an ad-
equate amount of data left to analyze. Unfortunately, both of 
these options are often not feasible when analyzing EEG data 
from pediatric populations, especially infants. Therefore, an 
alternative approach to dealing with artifacts is to use ICA 
(Delorme & Makeig, 2004; Jung et al., 2000) to identify such 
artifacts and then subtract the artifact-related activity from 
the rest of the EEG signal. ICA has the benefit of retaining 
the segments of data during which the artifacts occurred and 
is the approach that we employ in our pipeline.

ICA has been shown to perform better on data that re-
tains a degree of stationarity (Winkler, Debener, Müller, & 
Tangermann, 2015). For example, ICA performs better when 
the data are first filtered with a 1 Hz high-pass filter and pe-
riods of the recording that contain large amounts of EMG or 
periods where electrodes exhibit unusually high/low ampli-
tudes (e.g., ±1,000 μV) are additionally removed (Debener, 
Thorne, Schneider, & Viola, 2010; Winkler et al., 2015). 
However, an issue with applying a 1 Hz filter and removing 
segments of data with EMG before running ICA is that re-
searchers may be interested in low-frequency information or 
time periods during which excessive EMG occurs. Therefore, 
a hybrid approach involves making a “copy” of the data, 

https://sourceforge.net/projects/faster/
https://sourceforge.net/projects/faster/
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applying a 1 Hz high-pass filter and removing segments con-
taining excessive EMG or high/low amplitude data from the 
copy, running ICA on the copy, then copying the ICA weights 
(which contain the information needed to identify artifacts) 
back to the original data set that has not been filtered with the 
1 Hz high-pass filter (Debener et al., 2010). However, when 
removing segments that contain excessive EMG or unusually 
high/low amplitudes in the copied data set, it is possible that 
a few bad channels (missed by the FASTER tools described 
above) lead to the removal of too many data segments prior 
to running ICA on the copy. Therefore, prior to removing any 
segments of data from the copy, we first remove any channels 
that contain excessive EMG or unusually high/low ampli-
tudes for greater than 20% of the recording; these same chan-
nels are removed from the original data set as well. The end 
result of the copy/ICA process is an improved ICA decom-
position without having to sacrifice low-frequency informa-
tion or time periods that contain excessive EMG or unusually 
high amplitudes.

Once the ICA decomposition has been completed, it is 
necessary to select ICs that correspond to artifacts (blinks, 
saccades, EMG) and then subtract these components from the 
data. Several algorithms have been developed in order to au-
tomatically select ICA components, with one of the most pop-
ular being the ADJUST EEGLAB plugin (Mognon, Jovicich, 
Bruzzone, & Buiatti, 2011). This toolbox performs similarly 
to human observers when applied to adult data (Mognon 
et al., 2011). However, we found that ADJUST does not per-
form as well on pediatric data and misidentifies ICA compo-
nents as artifacts. Rather than manually reviewing the ICA 
components to correct the identification of ICA artifacts, we 
developed an alternative system. The ADJUST plugin clas-
sified EEG artifacts into four different categories: eyeblinks, 
horizontal eye movements, vertical eye movements, and ge-
neric discontinuities. ADJUST used temporal and spatial fea-
tures of an IC to calculate the likelihood of that component to 
belong to one of the four artifact categories. In order to im-
prove ADJUST’s performance on pediatric data, we modified 
the eyeblink and horizontal eye movement detection func-
tions to more accurately select blinks and saccades from less 
straightforward pediatric ICA decompositions from geodesic 
nets. Additionally, we included a new function to check for 
local maxima within the alpha band for all components that 
were classified as artifacts to de-select any ICs that included 
an alpha peak, which likely reflects neural activity (see Leach 
et al., 2020 for a detailed description of adjusted-ADJUST). 
Our “adjusted-ADJUST” scripts automatically select artifact 
laden ICs and have been shown to perform better than the 
original ADJUST algorithm in adults, children, and infants 
(Leach et al., 2020). Moreover, our “adjusted-ADJUST” al-
gorithms are customizable allowing researchers to be more 
or less conservative with their artifact rejection thresholds. 
After identifying ICs, we then subtract the ICA time series 

for these artifacts from the rest of the EEG signal. The final 
result is a continuous EEG data file with ICA-identified ar-
tifacts removed.

2.5 | Epoching and removal of residual 
ocular artifact

To examine the task-related neural activity in EEG, it is 
common to cut the continuous EEG data into epochs (time 
segments) of data surrounding the experimental events be-
fore performing further analyses quantifying neural features 
within these epochs (Luck, 2014). Epochs are constructed 
by identifying event markers of interest and then cutting 
the continuous EEG data into epochs of appropriate length. 
For resting-state data, we recommend epoching; continuous 
resting-state data can be segmented into fixed-length over-
lapping or non-overlapping epochs.

Once epochs have been created, it is possible to then loop 
through all epochs and identify any residual artifacts present 
within a given epoch. It is worth noting that the goal of remov-
ing ICA-identified artifacts is to “clean” the EEG signal with-
out needing to completely reject time segments that contain 
ocular or other artifacts. However, we have found that ICA 
artifact identification and removal is rarely perfect, resulting 
in at least a small number of artifacts being missed and still 
present in the data following ICA-identified artifact removal. 
Therefore, we perform additional preprocessing steps to deal 
with such residual artifacts after epoching the data. First, we 
loop through each epoch and test whether the voltage recorded 
from a set of electrodes located near the eyes (ocular chan-
nels) exceeds a predetermined threshold. The exact threshold 
employed differs as a function of age. Table 1 describes the 
voltage thresholds typically used in our lab. If the voltage is 
exceeded at any one of the ocular channels for a given epoch, 
then we assume that residual ocular artifact is present within 
the epoch and reject the epoch (the epoch is removed from 
all further analyses). Next, we loop through all epochs a sec-
ond time and identify whether any of the non-ocular channels 
(recorded from electrodes not located near the eyes) exceed 
the voltage threshold; for any epochs in which a non-ocular 
channel exceeds the voltage threshold, this channel is interpo-
lated within that epoch using a spherical spline interpolation 

T A B L E  1  The voltage threshold typically used for artifact 
rejection

EEG Data
Voltage threshold for 
artifact rejection

Infant ±150 μV

Children ±125 μV

Adolescent ±100 μV

Adult ±100 μV
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procedure (Perrin, Pernier, Bertrand, & Echallier, 1989). 
However, if greater than 10% of the non-ocular channels ex-
ceed the voltage threshold within a given epoch, then this 
epoch is instead rejected completely (removed from further 
analyses). To summarize our approach for dealing with re-
sidual artifacts: we use the electrodes located near the eyes to 
identify and reject any epochs that exceed a voltage thresh-
old, indicating the presence of residual ocular artifact, then 
additionally reject any epochs where more than 10% of the 
non-ocular channels exceed the voltage threshold; for all other 
epochs, individual channels are interpolated at the epoch level 
when they exceed the voltage threshold.

2.6 | Channel interpolation

In the previous section, we noted that non-ocular channels ex-
ceeding a predefined voltage threshold during specific epochs 
are interpolated at the epoch level using a spherical spline inter-
polation procedure. However, even after these channels have 
been interpolated, there remain other channels missing from all 
epochs because they were rejected in one of the first preproc-
essing steps (those identified by the “channel_properties.m” 
function). Following all other preprocessing steps, but before 
re-referencing the EEG data, we interpolate these missing 
channels using the spherical spline interpolation procedure as 
implemented in the EEGLAB toolbox. The reason for not in-
terpolating these channels until all other preprocessing steps 
have been completed is because interpolated channels contrib-
ute no unique information to the ICA procedure (Delorme & 
Makeig, 2004). Additionally, the interpolated data will likely 
approach a closer estimate of the actual missing EEG data if 
other idiosyncratic artifacts are first removed from the channels 
being used to compute the interpolation.

2.7 | Re-referencing

The last step we perform in our preprocessing pipeline is to 
re-reference the epoched data. Re-referencing means that the 
voltage time series for each electrode will no longer reflect 
voltage relative to the reference electrode(s) used during data 
collection. Instead, the voltage time series will now reflect 
voltage relative to the offline, re-referenced electrode(s). 
Re-referencing is performed last, because, in the case of 

computing an “average reference,” data from all channels are 
used in the computation of the average reference; therefore, 
all artifacts need to first be removed from all channels so 
that channel-specific artifacts are not propagated to all other 
channels during the computation of an average reference. 
Additionally, channel interpolation must be performed prior 
to the computation of the average reference so that there is 
not a biased weighting of specific scalp locations in the esti-
mate of the average reference.

3 |  VALIDATION ANALYSIS OF 
THE MADE PIPELINE

In order to validate the MADE pipeline, we tested its per-
formance on three data sets across childhood: an infant (12-
month old) data set, a childhood (3–6 years old) data set, and 
a late adolescent (16-year old) data set. We preprocessed 10 
subjects in each data set using three methods: (a) the MADE 
pipeline; (b) a traditional method involving only epoch level 
interpolation before artifact rejection, but no ICA-based ar-
tifact rejection (i.e., no FASTER and no ICA); and (c) an 
even more conservative method without interpolation before 
artifact rejection. The outcome of interest was the percent of 
trials retained after each preprocessing method. Table 2 de-
scribes the three EEG datasets used for testing the pipeline. 
In this section, we describe data acquisition procedures, the 
preprocessing steps and the results of the preprocessing of 
these three datasets.

3.1 | EEG data acquisition

3.1.1 | Infant data

The infant data set was part of a larger study examining 
the neural correlates of action execution, action observa-
tion and point observation in infants. Data were recorded 
with a 128-channel EGI system (NetAmps 300; Electrical 
Geodesics, Eugene, OR). There were 15 blocks of three trial 
types (observe grasp, observe point and execute grasp) in a 
randomized order and the infants completed as many trials 
as possible. The vertex (Cz) electrode was used as an online 
reference. EEG data were sampled at 500 Hz and impedances 
were kept below 100 kΩ.

T A B L E  2  Acquisition parameters for 10 example data files from three age groups

EEG dataset Participant age (years) EEG type EEG system Sampling rate (Hz) No. of channels Reference

Infant 1 Event Related EGI 500 128 Cz

Childhood 3–6 Event Related BioSemi 512 64 CMS

Late adolescent 16 Resting EGI 500 64 Cz
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3.1.2 | Child data

The child data were part of a larger study examining the neural 
correlates of memory formation in children from a Northeast 
city from the United States (Riggins & Rollins, 2015). Data 
were recorded using a 64-channel BioSemi Active 2 EEG 
recording system for a study investigating age-related differ-
ences in memory (Riggins & Rollins, 2015). EEG data were 
recorded at 512 Hz and common mode sense (CMS) elec-
trode was used as a reference. Each block consisted of the 
random presentation of 54 previously seen (target items) and 
27 new (distracter) items, for a total of 243 ERP trials.

3.1.3 | Late adolescent data

The late adolescent data set was part of a larger study ex-
amining the behavioral and neural effects of early neglect in 
children from Bucharest, Romania (Debnath, Tang, Zeanah, 
Nelson, & Fox, 2020). Data were recorded with a 64-channel 
EGI system (NetAmps 300). The resting EEG was recorded 
for 6 min, alternating 1 min of eyes open and eyes closed. 
The vertex (Cz) electrode was used as an online reference. 
EEG data were sampled at 500 Hz and impedances were kept 
below 50 kΩ.

3.2 | Preprocessing with MADE

EEG data from three studies were preprocessed with the fully 
automated version of the MADE pipeline and two more tra-
ditional methods (one with interpolation and one without). 
A step-by-step description of the preprocessing through the 
MADE pipeline are presented in the supplementary materials.

3.3 | Post-processing reports

For each data set, MADE produces a processing report for 
each EEG file in a single CSV file to evaluate preprocessing 
performance and data quality across subjects within a study. 
Tables 3–5 present the processing report with all the metrics 
for the three example data sets. Figure 2 shows examples of 
EEG signals from the three datasets before and after MADE 
processing.

3.4 | Traditional preprocessing methods

Similar to the MADE pipeline, the two traditional preproc-
essing methods applied a 0.3 Hz high pass filter to the con-
tinuous data collected with an EGI EEG system (0.1 Hz high 
pass for data collected with the BioSemi system) and a 50 Hz T
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low pass filter to the infant and child data sets (40 Hz low 
pass for the adolescent data set). Infant and childhood data 
were down-sampled at 250  Hz. Next, the continuous EEG 
data were segmented into fixed length epochs separately 
for each data set (using the same epochs for each data set 
as the MADE pipeline). For the traditional method that in-
cluded interpolation, a voltage threshold rejection (±150 μV) 
was applied in a set of frontal electrodes (the same sets the 
MADE pipeline used for each data set). As in the MADE 
pipeline, the epochs in childhood data were baseline cor-
rected using the time window from −1,000 ms to −500 ms, 
the adolescent data were baseline corrected using the entire 
epoch (0–2,000  ms), and the infant data were not baseline 
corrected. If an epoch in these frontal channels exceeded 
the voltage threshold of ±150 μV, that epoch was rejected. 
For all other channels, artifact-laden channels in each epoch 
were interpolated using the artifact-free data from the sur-
rounding channels within that epoch. If more than 10% of the 
channels within an epoch were interpolated, that epoch was 
rejected. For the method that did not include interpolation, 
voltage threshold rejection, (±150 μV) was applied over all 
channels and any epochs where at least one channel exceeded 
this voltage threshold of ±150 μV were rejected. Finally, for 
both of the traditional preprocessing methods, the remain-
ing epoched data were then re-referenced to an average of 
all channels. Figure 2 shows examples of EEG signals from 
the three data sets before and after MADE and traditional 
preprocessing.

4 |  RESULTS

The results of the comparisons of the three preprocessing 
methods are summarized in Table 6 and Figure 3. In order 
to compare the different methods, we performed Wilcoxon 
Signed Ranks tests on the proportion of trials retained for 
each preprocessing method, separately for the three data sets 
(Adolescent, Child, and Infant) as each data set used a differ-
ent task. To control for potential Type I errors due to multiple 
comparisons, we used the false discovery rate (FDR) correc-
tion (Benjamini & Hochberg, 1995). The FDR-corrected  
p value is represented by the q value.

As seen in Figure 3, the MADE pipeline retained signifi-
cantly more trials than the traditional preprocessing method 
with interpolation for adolescents, Z  =  2.52, p  =  .012, 
q = 0.012, children, Z = 2.80, p =  .005, q = 0.006, and in-
fants, Z = 2.80, p = .005, q = 0.006. The MADE pipeline also 
retained significantly more trials than the traditional method 
without interpolation for adolescents, Z  =  2.80, p  =  .005, 
q = 0.006, children, Z = 2.80, p = .005, q = 0.006, and infants, 
Z = 2.80, p = .005, q = 0.006. In sum, as expected, the MADE 
pipeline performed better than the two comparison methods.

5 |  DISCUSSION

Recent advancement in EEG data recording technology and 
the advent of high-density EEG nets has given impetus to 

F I G U R E  2  EEG signal before preprocessing and after MADE and traditional processing. Three files from the three example data sets are 
shown with 5-s of data extracted from the recording. The EEG signal after high-pass filtering is shown in the left panel. The EEG signal after 
MADE preprocessing is shown in the middle panel. The EEG signal after traditional preprocessing without interpolation as described in the 
preprocessing section of the example analysis is shown in the right panel. All scales are in microvolts
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using EEG in the diverse population and large-scale studies. 
The use of EEG in large-scale studies with different subject 
groups yields large amounts of data. In many cases, the EEG 
data, particularly EEG data collected from pediatric popula-
tions, make the data processing procedure highly complex 
and challenging. The pediatric data often contain a high de-
gree of artifact contamination, shorter recording lengths, and 
the quality of the EEG recordings is substantially reduced 
compared to recordings collected in adults. Traditionally, re-
searchers relied on expert supervision for artifact identifica-
tion and removal for pediatric EEG data. However, the manual 
data cleaning process decreases the replicability of methodol-
ogy and the processed results. Moreover, with the increasing 
amount of available data and the complexity of preprocessing 
procedures, the manual data processing becomes impractical 
and makes automatic preprocessing of EEG data essential. 
Multiple open source toolboxes and pipelines are publicly 
available for EEG data preprocessing (APP, Automagic, 

PREP) but these pipelines are optimized for data features that 
are often not particularly suitable for pediatric EEG data due 
to the constraints in pediatric EEG recordings. Although the 
HAPPE preprocessing pipeline has recently been streamlined 
to process pediatric data, it is unable to process ERP data. 
Therefore, there is a dearth of software with standard features 
used in adult EEG data processing (e.g., ICA, automatic iden-
tification of noisy channels) for processing of pediatric EEG 
data. To address these issues, we developed MADE, an open 
source MATLAB software that combines currently available 
standard preprocessing techniques and custom-made features 
particularly suitable for EEG data collected from pediatric 
populations.

We developed MADE as an automated EEG prepro-
cessing pipeline for pediatric EEG data and investigated the 
effect of processing resting and task-based EEG data from 
diverse populations through MADE. This validation revealed 
that MADE performs significantly better than two other 

T A B L E  6  Descriptive information on trials retained

Age N Mean (%) SD (%) Minimum (%) Maximum (%)

Percentiles

25th 50th (Median) 75th

Adolescents MADE pipeline 10 97.90 4.45 85.40 100.00 98.51 99.13 100.00

Traditional with 
interpolation

10 94.31 5.77 80.53 100.00 92.42 95.20 98.88

Traditional without 
interpolation

10 72.03 15.52 43.95 94.20 60.44 75.36 83.53

Children MADE pipeline 10 75.94 19.76 31.69 94.65 65.64 84.90 88.68

Traditional with 
interpolation

10 43.61 17.84 23.05 78.19 29.61 38.45 57.20

Traditional without 
interpolation

10 19.30 17.32 0.00 45.27 3.70 13.62 38.17

Infants MADE pipeline 10 67.44 16.86 35.56 86.96 53.00 72.92 81.20

Traditional with 
interpolation

10 31.84 11.53 13.33 48.00 22.46 31.88 41.46

Traditional without 
interpolation

10 21.70 11.26 6.67 41.67 11.88 20.42 31.50

Note: Descriptive information on the proportion of trials retained by each preprocessing method (MADE pipeline, Traditional with interpolation, and Traditional 
witout interpolation) for each of the three datasets (adolescents, children, and infants).

F I G U R E  3  Box plots showing the proportion of trials retained by each preprocessing method (MADE Pipeline, Traditional with 
interpolation, and Traditional without interpolation) for each of the three example data sets (Adolescents, Children, and Infants) included in the 
analyses
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processing streams, which are the common data analysis ap-
proaches used in many labs. MADE retained significantly 
more trials compared to the traditional methods for both rest-
ing and task-based EEG data in all age groups. At the end of 
the processing of a data set, MADE produces a report file 
containing a summary of quality measures for each data file. 
The report file will allow the users to determine whether a 
particular subject needs to be excluded from analysis due to, 
for example, excessive contamination of artifacts or an insuf-
ficient number of post-processed artifact-free trials. MADE 
is also able to save data at different levels of the preprocess-
ing pipeline, which would allow the users to examine whether 
a particular data file might have some issue that needs a 
closer look at an earlier step of data processing. Moreover, 
MADE is able to process both resting and ERP data, which 
was a limitation in previous pipelines developed for pediatric 
data. In addition, the MADE pipeline provides a variety of 
supplemental scripts to assist with re-labeling event-related 
data and excluding interference trials from infant data (see 
Appendices). Finally, in the online supplement, we provide a 
step-by-step tutorial on how to process data using MADE. In 
sum, MADE is very easy to customize for a particular data 
set and users, we believe, will be able to seamlessly adapt 
MADE for their study.

There are some limitations to the MADE pipeline and 
the presented validation. We only tested MADE on 64- and 
128-channel EEG data sets. However, we expect the pipe-
line to work equally well for recordings with more channels. 
We do not recommend the use of MADE for EEG data re-
corded with less than 32 channels. In such cases, MADE can 
still be used, but some parameter calculation and processing 
steps might not be optimal due to insufficient data channels. 
Furthermore, MADE relies heavily on ICA for artifact re-
jection, hence the correction of eye-movement-related arti-
facts using EOG channels cannot be performed. However, 
the most challenging part of the ICA based artifact rejection 
technique is the correct classification of ICs. In this pipeline, 
we used an automatic ICs classification method, the adjust-
ed-ADJUST, to avoid subjective bias in the ICs classification. 
The adjusted-ADJUST scripts were created by optimizing 
the ADJUST algorithm for infant data and are believed to be 
performing significantly better in pediatric populations than 
existing ICs classification methods. Finally, the validation of 
the pipeline and the comparison of results with traditional 
methods are limited to the percent of post-processing trials. 
However, one of the main goals of this pipeline was to min-
imize loss of data, which is a major concern in EEG studies 
with the pediatric population, while excluding unwanted arti-
facts from the raw EEG signal.

In sum, this article proposes and validates MADE, an 
EEG preprocessing pipeline streamlined for pediatric EEG 
data. We validated MADE on EEG data recorded with 
different systems and populations. Our results show that 

MADE performs significantly better than other traditional 
preprocessing methods. MADE is freely available under the 
terms of the GNU General Public License (version 3) (Free 
Software Foundation, 2007). MADE and associated scripts 
may be accessed at https://github.com/Child DevLa b/MADE-
EEG-prepr ocess ing-pipeline. We hope that this automatic 
EEG data processing pipeline will contribute to pediatric 
EEG research and users will benefit from this pipeline and its 
accompanying MATLAB scripts.
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APPENDIX A

EXCLUDING INTERFERENCE 
TRIALS FROM ANALYSIS
In EEG experiments with pediatric populations, the sub-
jects or caregivers often tend to make unintended motions 
in an experimental trial. The unintended motion can be 
of different natures depending on the experiment design 
such as gesture, gross motor movement, or leg movement. 
Moreover, there are trials in which the subjects do not per-
form the desired task event. The trials in which the subjects 
or caregivers appear to make unintended motions or the 
subjects do not perform the task are generally categorized 
as interference trials. In order to identify the interference 
trials, a common practice in pediatric EEG experiments 
is that the EEG tasks are video recorded and videos are 
coded for live events and synchronized with the continu-
ous EEG recording. The coders view the videos off-line 
to identify the event of interest and also interference tri-
als. The interference trials are then excluded from the  
analysis.

There are different ways to code and exclude interference 
trials from the analysis. Here we present a procedure, which 
is a standard method of our lab, to remove interference trials 
from EEG analysis. Two independent coders view each video 
file off-line frame-by-frame and separately identify each 
event of interest and all interference events. Coders iden-
tify the frame, in which an experimental event is completed 
and in which an interference event occurred. If the frame in 
which the interference occurred falls within an experimental 
trial, then that trial is coded as an interference trial to be ex-
cluded from the analysis. After video coding, an excel file is 
created including the interference trials from all conditions 
and subjects. An example excel file of interference trials can 
be found at https://github.com/Child DevLa b/MADE-EEG-
prepr ocess ing-pipeline.

To exclude the interference trials from analysis for each 
subject, we developed a method that includes a 3-step pro-
cess: (a) reading the excel file containing interference trials 
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of all subjects, (b) numerical labeling of all trials in each 
condition, (c) marking interference trials. The Matlab script 
exclude_interference_trials.m implements this method. The 
users can edit and adapt the script for their experiments and 
call the script to the pipeline for excluding interference trials 
from the analysis.

APPENDIX B

SEGMENTING EYES OPEN AND 
EYES CLOSED RESTING STATE 
EEG DATA
Resting state EEG data are one of the most commonly re-
corded brain measures in pediatric populations. Because 
resting state EEG does not involve any specific task event, 
the data are segmented by inserting dummy markers. The 
EEGLAB function eeg_regepochs.m has been used in 
the MADE pipeline to segment a continuous data set into 
consecutive epochs of a specified regular length by add-
ing dummy markers and epoching the data around these 
markers. This way the whole length of continuous EEG 
data is converted into epochs. However, resting state EEG 
is generally also recorded with two conditions: eyes open 
and eyes closed. It is increasingly becoming a common 
practice to record resting state EEG for several minutes, 
alternating eyes open and eyes closed conditions. The  
eeg_regepochs.m function cannot be used to segment 
data into separate eyes open and eyes closed conditions. 
Therefore, we have developed a procedure to segment con-
tinuous resting EEG data into specific length epochs in the 
eyes open and eyes closed conditions. The Matlab script 
create_eyes_open_closed_resting_epoch.m provides a cus-
tomized method of creating separate eyes open and eyes 
closed epochs from continuous EEG data recorded in eyes 
open and eyes closed conditions. The script takes user’s 
inputs for dummy markers and epoch length, then inserts 
dummy markers at specific intervals and creates epochs of 
the specified length that are time-locked to those dummy 
markers. Furthermore, it can create either overlapping or 
non-overlapping epochs based on the user’s inputs. The 
users can customize the create_eyes_open_closed_rest-
ing_epoch.m script to adapt it for their data.

APPENDIX C

MARKER EDITING FOR  
TASK-RELATED EEG DATA
EEG files recorded, while participants perform experimental 
tasks typically contain event markers that indicate when specific 
stimuli were presented or responses were made. For example, 
a visual task requiring participants to indicate, via button press, 
what stimulus was presented to them will at least contain event 
markers, indicating exactly when the stimuli were presented 
and button presses were made by the participant. Depending 
on what software was used to present the experimental task and 
what kind of EEG system was used to collect EEG data, the 
individual event markers may contain further information and/
or additional markers that contain information about the task pa-
rameters. For example, if two kinds of stimuli are presented to 
participants within a single experimental task, then the stimu-
lus identity may already be coded in the stimulus event marker, 
or, an additional event marker may contain information about 
the stimulus identity. Similarly, in order to determine whether a 
given stimulus event marker arises from an experimental trial in 
which the participant correctly responded, accuracy information 
from the response marker, or another marker, needs to be “cop-
ied over” to the associated stimulus event marker.

In order to properly label all event markers present in the 
EEG file, it is necessary for the MADE pipeline to call an ad-
ditional script that loops through each event marker and prop-
erly labels them based on available information contained in 
other nearby markers. The script that will properly label the 
event markers in your EEG file needs to be customized for the 
purposes of the specific experimental task that is associated 
with your EEG file, as well as to be compatible with the soft-
ware used to present the experimental task and EEG system 
used to collect the EEG data. As an example of what this script 
might look like, please refer to the script entitled, “edit_event_
markers_example.m.” This script is a simplified version of a 
more complicated script that we commonly employ to label 
event markers arising from a “visual Flanker task” presented 
on e-Prime software with EEG recorded using an EGI system. 
Please note that this script is only meant as a simplified exam-
ple of an event marker labeling script, and should only serve as 
a starting point for your own customized scripts.


